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Preface

What is actually the information directly represented in the scale-space? I started
to wonder about this shortly after Peter Johansen, 15 years ago, showed me
his intriguing paper on how uniquely to reconstruct a band-limited 1D signal
from its scale-space toppoints. Still, I have not fully understood its implications.
Merely recording where structure vanishes under blurring is sufficient to fully
reconstruct the details. Of course, technicalities exist, for example, you must
also know negative scale toppoints. Nevertheless, I find it surprising that we
may trade the metric properties of a signal with the positions of its inherent
structure. The result has been generalized to analytic signals, shown also for the
zero crossings of the Laplacean, but has not yet been generalized to 2D. This
remains an open problem.

In 2003, Peter Giblin, Liverpool University, Luc Florack, Eindhoven Univer-
sity of Technology, Jon Sporring, University of Copenhagen, my colleague Ole
Fogh Olsen, and several others started the project collaboration Deep Structure
and Singularities in Computer Vision under the European Union, IST, Future
and Emerging Technologies program, trying to obtain further knowledge about
what information is actually carried by the singularities of shapes and gray-scale
images. In this project, we probed from several directions the question of how
much of the metric information is actually encoded in the structure of shapes
and images. We, and many others, have given hints in this direction. We have
shown that—to a very large degree—you may reconstruct 2D images from their
toppoints, and—to a very large degree—you may identify images in a database
based solely on the toppoints. Likewise, we have shown that—to a very large
degree—you may index shapes based on their singularities, as was shown earlier
by Benjamin Kimia and colleagues. Hence, the structure may be useful. But still,
we do not really know its limitations.

This current volume of LNCS is the proceedings from the workshop held
in Maastricht, June 10–11, 2005. This workshop was based on invited speakers
and contributed papers subjected to peer review. From these, 22 papers were
selected for this volume. They represent the year 2005 state of the art in under-
standing the relation between structural, topological information represented by
singularities and metric information of signals, shapes, images, and colors. The
concise results like “the toppoints encode all metric information” still remain,
but progress and insight have been gained over the last 15 years. In this volume,
the reader will find papers by many of the people who have contributed to the
discussion in the past: Does structure matter?

Mads Nielsen
The IT University of Copenhagen
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Blurred Correlation Versus Correlation Blur

Jan J. Koenderink and Andrea van Doorn

Universiteit Utrecht
j.j.koenderink@phys.uu.nl

Abstract. We discuss the topic of correlation in a scale space setting.
Correlation involves two distinct scales. The “outer scale” is the scale
of the region over which the correlation will be calculated. Classically
this is the whole space of interest, but in many cases one desires the
correlation over some region of interest. The “inner scale” is the scale
at which the signals to be correlated are represented. Classically this
means infinite precision. For our purposes we define “correlation” as the
point–wise product of two signals, “blurred correlation” as the integra-
tion of this correlation over the region of interest, and “correlation blur”
as this point–wise correlation applied to the signals represented at the
inner scale. For generic purposes we are interested in “blurred correla-
tion blur”. We discuss a well known (and practically important) exam-
ple of blurred correlation for essentially zero inner scale. Such a situation
leads to apparently paradoxical results. We then discuss correlation blur,
which can be understood as a form of “regularized” correlation, leading
to intuitively acceptable results even for the case of point sets (e.g., tem-
poral events or point sets in space). We develop the formal structure and
present a number of examples.

1 Blurred Correlation

We will speak of a “correlation” r(s) of two signals f(r) and g(r) if r(s) is
a blurred version of the product of blurred versions of f(r) and g(r). This is
a slight generalization of the usual concept where the correlation is the fully
blurred product of the unblurred functions. Notice that there exist two essential
scale parameters here, namely the “outer scale”, which is the scale of the blurring
of the product, and the “inner scale”, which is the scale of the blurring of the
components.

First we will consider the case of very small inner scale, i.e., the components
are fully resolved at the point where they enter the multiplication process. Such
cases are comparatively rare.

A key instance of this “blurred correlation” occurs in human vision[10].
The causal chain in vision goes as follows: An illuminant causes an illumina-
tion spectrum f(λ) on a surface with spectral reflectance g(λ), causing a beam
to be scattered to the eye whose luminance—apart from an inessential con-
stant factor—has a spectrum that equals the product f(λ)g(λ). The product is
blurred in the retinal transduction process and gives rise to the blurred correla-
tion k(λ;σ) ◦ (f(λ)g(λ)) of which three point samples enter the optic nerve. The

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 1–11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J.J. Koenderink and A. van Doorn

blurring kernel k(λ;σ) is approximately a gaussian of spectral width σ, it is due to
the action spectra of the retinal photoreceptor cells. The point samples are taken
at spectral locations such that the kernels centered at these locations have signif-
icant overlap. The vector of samples is an element of the three–dimensional col-
orimetric space, which is a linear projection of the infinitely dimensional Hilbert
space of spectra of beams that enter the pupil. One consequently says that the
human visual system is “trichromatic”.

In the simplest setting the observer has some default assumption concerning
the spectrum of the illuminant (for instance that it corresponds to the “average
daylight spectrum”) and thus can perform low resolution spectroscopy on the
spectral reflectances (often called “spectral signatures”). Obviously this infer-
ence is rather ambiguous, a fact known as “metamerism”. Yet human observers
generally manage to distinguish between lemons and oranges on the basis of
their “color”.

It is easy to prove that surfaces and lightsources may be designed such that
surface samples {a, b} say will lead to colors {P ,Q} under source A and {Q,P}
under source B. Here P andQ may be any color you fancy. This fact (it is indeed
a fact though we are not aware of a published proof) has led philosophers[4] to
state that color vision is impossible! (As the saying goes “colors are mere mental
paint”.) Thus this fact has very important (and counterintuitive) consequences.
Yet it is true. Here is a constructive proof:

Proof: Let ∆λ be a spectral bin width that is much narrower than σ, as small
as you wish. We partition the spectrum in non–overlapping, contiguous bins of
width ∆λ. We sample the source spectrum and spectral signatures (as is in fact
commonly done in colorimetry). Now we split each bin into two equal sub–bins,
say the “left” and “right” sub–bins. We define source A to be the spectrum
of a truly white source (say average daylight) in the left bins and zero in the
right bins. Similarly, we define source B as zero in the left bins and the same
truly white source in the right bins. We double the illuminance to keep the total
illuminance equal to that of the proper white source W (which has equal value
in both the left and right bin). A piece of white paper (constant reflectance
equal to unity) will look the identical white under these three sources. (In fact,
virtually all surfaces you may encounter in daily life will look identical under
these sources.) Next we sample the spectral signatures for the selected beams
that will yield the colors P and Q. Then we prepare the sample a such that the
spectrum for P goes in the left and the spectrum for Q in the right bins. For
the sample b we do the same, except that we interchange the two spectra. As a
result source A will produce color P from sample a and color Q from sample b,
whereas source B will produce color Q from sample a and color P from sample
b. (Source W will show the color of the equal mixture.) Notice that the same
trick allows us to construct a surface and any number of sources n such that the
surface will look any predetermined color for source i ∈ (1 . . . n). Q.E.D.

Consider a simple example. A trichromatic vision system has the spectral
“fundamental response curves” shown in figure 1. Here we have abstracted the
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spectral range as the interval (0, 1), and the system simply finds the average
radiant power in three subranges of length 1/3 each, thus the result of a mea-
surement is a color vector {r, g, b} where we refer to the coordinates (arbitrarily)
as “red”, “green” and “blue”, for ease of reference.

0 0.5 1 0 0.5 1 0 0.5 1

Fig. 1. The fundamental response curves of a color system

We consider a “standard illuminant” with a flat spectrum, and two “special
illuminants” A, and B, as shown in figure 2. Notice that the special illuminants
have mutually exclusive support, and that both “cover the spectral range uni-
formly”, albeit with frequent minor gaps. These illuminants can be thought of
as “multiplexing” the spectrum.

0 0.5 1 0 0.5 1 0 0.5 1

Fig. 2. The powerspectrum of the standard illuminant (left) and the “special illumi-
nants” A and B (center and right respectively)

We consider two samples with spectral signatures shown in figure 3. The
“gray” sample has a flat spectral signature, whereas the “special” sample has
a rather complicated spectral signature, whose transitions occur at the same
positions as those of the special illuminants.

In figure 4 we show the radiant power spectra of the beams that are scat-
tered towards the eye by various combinations of illuminants and samples. These
beams lead to colors generated by the visual mechanism illustrated in figure 1.
We assume that all this “observer” does is report these colors, which we will
describe in terms of the conventional color names.

The way a magician might try to fool the observer (who is supposed to be
unaware of the way the magician prepared the illuminants and samples) might
run as follows
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0 0.5 1 0 0.5 1

Fig. 3. The spectral signatures of the gray sample (left) and the special sample (right)

0 0.5 1 0 0.5 1

0 0.5 1 0 0.5 1

Fig. 4. The beams scattered towards the eye from the gray sample (top left) and special
sample (top right), as illuminated by the standard illuminant. The bottom row shows
the beams scattered towards the eye from the special sample as illuminated by the
special beam A (left) and B (right).

1. The magician takes the gray sample and holds it under each illuminant in
turn. The observer reports “white” (that is α{1, 1, 1}) in all three cases.
The magician does this in order to let the observer believe that the three
illuminants are the same.

2. In order to strengthen this (false!) impression the magician might show sam-
ples with smooth spectral signatures like βλ, (looks blue) β(1 − λ) (looks
red), 4β(λ− 0.5)2 (looks purple), β[1− 4(λ− 0.5)2] (looks green). They look
identical under all three illuminants.

3. The magician selects one illuminant (the standard illuminant!) in order to let
the observer compare the samples, perhaps remarking that the “illuminants
are the same anyway”. Both the gray sample and the special sample look the
same to the observer (both γ{1, 1, 1}, that is “white”). The magician does
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this in order to let the observer believe (falsely again!) that the samples are
the same.

4. In order to strengthen this (false!) impression the magician might show the
samples under a number of illuminants with simple spectra like δλ, (looks
blue) δ(1−λ) (looks red), 4δ(λ−0.5)2 (looks purple), δ[1−4(λ−0.5)2] (looks
green). The two samples look identical under all such illuminants.

5. Now the magician has prepared the observer for his “magic”: The magician
takes the special sample (white paper!) and places it under the special illu-
minants (white lights!) in turn. Under the special illuminant A the special
sample looks green (that is ε{2, 5, 2}), and under the special illuminant B
the special sample looks purple (that is ϕ{4, 1, 4})!
The observer is suitably impressed by this true magic! How can a piece of
white paper become colored when illuminated by a white source? If this is
possible anything goes! As many philosophers have it: “Color is mere mental
paint”.

In principle there is nothing that would prevent one from preparing such a trick,
no principle of physics is violated by the magician. Yet the observer has no way
to predict the outcome of any case on the basis of mere color observations.

Although this is all true, and one has to grant the philosophers that color
vision is indeed impossible(!), the result should be highly counterintuitive. It is
indeed counterintuitive because cases like this appear as sheer “magic”, since
such cases simply never occur (to such an extent) in real life. Indeed the setting
up of this situation asks for very precise engineering, the way magicians set up
their tricks (although not physically impossible, current technology is not up to
this feat). Several things are very “non–generic” in the ecological sense:

— actual illuminants and spectral signatures are not that articulated. Most
spectra are smooth, even on the scale σ;

— even if the illuminant spectrum and spectral signatures were to be rough on
a scale finer than σ, it is very unlikely indeed that they would happen to
be “in sync” as the example requires. The physical reason is that spectral
signatures and illuminant spectra are due to completely independent physical
causes.

As a result, in real life colors are far from being “mental paint”. Indeed, color
vision is much closer to some form of very low resolution spectroscopy. It is not
a miracle at all (as many philosophers would have it) that you easily (in normal
circumstances) distinguish between lemons and oranges on the basis of their
color.

This suggests perhaps that there is something very artificial about the no-
tion of “blurred correlation” in the sense that it allows “miracles”: Invisible
structures (because not resolved in the signals f and g) may give rise to visible
effects in the blurred correlation r. Such effects occur if—behind the scene—
some common cause structures the signals at the microlevel. In practice blurred
correlation is only useful if you have some independent (we mean not obtained
via the observation of the signals f and g) prior knowledge. Examples include



6 J.J. Koenderink and A. van Doorn

“point matching” where you have two point clouds known to differ only by some
transformation from a known group.

The “blurred correlation” case occurs frequently in computer vision in prob-
lems of image registration, point matching in sparse point clouds, etc. Cases like
color vision are so interesting because the inner scale pops up in the phenomena
though the system itself (the visual system) functions at a completely different
(outer) scale. This leads to (from the perspective of the system) “magic” effects
that can in no way be accounted for.

2 Correlation Blur

In “correlation blur” it are the components that are blurred, before they enter
into the multiplication process. In most cases we will follow this up by a blurring
of the correlation, but in the first instance we will ignore this step. Notice that
correlation blur would serve to “regularize” the colorimetric example in the sense
that it will make no difference whether the samples are presented under the
sources A, B or W . This effect cannot be obtained by blurring the correlation (as
happens in color vision), thus “correlation blur” differs essentially from “blurred
correlation”.

Correlation blur is commonly applied in the correlation of point events[1].
If events are of arbitrarily short duration, then no two physical event trains
are likely to show any correlation at all, because there will necessarily be some
temporal or spatial uncertainty in the exact moments of occurrence of the events.
Notice that this renders the very notion of “correlation” meaningless. Hence it
is common practice to compute correlation relative to some (often arbitrarily
assigned) “correlation window”. Such a window effectively introduces the inner
scale. Although the introduction of a “correlation window” is common enough, it
is usually considered a mere (trivial) technicality, hardly worth mentioning. Yet
the correlation window width will obviously show up in the results. It is much to
be preferred to take the introduction of the inner scale in the correlation process
serious and frame a formal theory of it.

Cases where correlation blur is perceived to be evidently necessary are abun-
dant in vision. Consider cases like two “intersecting” schools of (different) fish,
treetops, and so forth. Of course the fish nor the twigs actually (physically)
“overlap” in the sense of sharing a common volume of flesh or wood, yet the
schools or the treetops evidently do share (distributed) biomass. Human ob-
servers spontaneously “see” the degree of overlap in such cases. Visually the
schools of fish or treetops do share a common volume. One obviously needs to
adjust the notion of “geometrical overlap” accordingly.

One way to obtain such effects formally is to blur the component functions
before the multiplication takes place[8,9], in other words, to consider “correlation
blur”. Thus we are led to consider the signal r = (kσ ◦ f) • (kσ ◦ g) (“◦” denotes
convolution, “•” correlation—here shift and multiplication), for the kernel k for
which we will assume a gaussian. Explicitly we have
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r(t, s) = (
∫

kσ(τ )f(t − τ ) dτ )(
∫

kσ(ξ)g(t + s − ξ) dξ)

=
∫

Kσ(τ , ξ)h(t − τ , t + s − ξ) dτdξ,

where we have introduced the (isotropic) kernel

K(u,v) = k(u)k(v) = K(
√
‖u‖2 + ‖v‖2),

and the product function h(u, v) = f(u)g(v) in {u,v}–product space. Thus the
correlation r(t, s) is the blurred version (with blur kernel K(u,v)) of the product
f(t)g(t + s) of the unblurred functions, in the product image domain, that is
the “raw” (“unblurred”) correlation.

The classical correlation is the integral of r(t, s) over t, for s = 0 the integral
over the diagonal of the product image domain. But due to the width σ of the
kernel the blurring of the original signals has the effect of effectively integrating
over a diagonal strip of finite width. This is the “correlation window” effect.

The correlation blur of two sets can be understood as the linear superposition
of gaussians due to pairs of points, one point in the first, the other in the second
set. For consider the pair of weighted points

f(t) = Fδ(t− t0)
g(t) = Gδ(t − t1),

then the autocorrelation is

r(t, 0) = FGKσ(t− t0, t− t1),

which reaches a maximum at the average location tmean

tmean =
t0 + t1

2
.

depending on the separation ∆t

FGKσ(
√

2‖∆t‖) where ∆t =
t0 − t1

2
,

Thus due to the weight Kσ(
√

2‖∆t‖) only pairs of points that are close on the in-
ner scale will contribute significantly. Thus we obtain an intuitive representation
of the “event windowing” praxis.

In general we will add a blur to the correlation blur. We obtain

r(t, s) = kη(ζ) Kσ( ‖τ‖2 + ‖ξ‖2)h(t + ζ − τ , t + ζ + s − ξ) dτdξ dζ,

where kη(ζ) denotes an isotropic Gaussian kernel of scale parameter η. If the
average distance between the fish in a school is large with respect to the inner
scale, such an additional blur will serve to smooth away the “fishy” structure
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Fig. 5. Left: Two random event trains. The events have been drawn from somewhat
staggered gaussian distributions of equal width. The “overlap” is visually evident.
Right: Blurring the event trains yields noisy estimates of the p.d.f’s used to gener-
ate the event trains. These estimates have common support, whereas the original event
trains have not.

of the school. Notice that this “blurred correlation blur” depends on two scales,
the “inner scale” σ and the “outer scale” η (where typically η � σ).

We have obtained a nice, linear “scale space” representation[5,2,3], albeit in
the product space, and dependent on two scales, rather than just a single scale.
One may develop a formal theory of correlation as a special branch of scale space
theory.

Correlation blur thus serves to “define correlation where these isn’t any” and
thus it depends essentially on the current context whether the concept makes
sense. Both the inner and the outer scale can only be picked if the nature of the
problem has been agreed upon. For a single structure (a pair of given images
say) one might easily be interested in various aspects of the mutual structure and
for each aspect the choice of inner and outer scale would be different. Any pair
of images can thus be associated with a two parameter (inner and outer scale)
“blurred correlation blur” scale space. Such association structures are clearly of
considerable practical interest, yet have (thus far) not been formally studied, at
least not in the most general setting.

3 An Example

The simplest case concerns a pair of one–dimensional images. We will consider
point clouds that mutually overlap in the obvious visual sense, yet have only
insignificant classical correlation. E.g., we may assume that no point in one image
coincides precisely with any point in the other image. We will consider two point
clouds that are defined via random locations drawn from certain p.d.f’s. In that
case one intuitively expects the (suitably) blurred correlation blur to reflect the
product of these (implicit) densities. An example is shown in figure 5.

Blurring the signals produces overlapping distributions, and indeed, the prod-
uct of the blurred functions reveals the “overlap” (figure 6). A blurring of the
product produces a result that is quite similar to the product of the distributions
from which the random pulse trains were generated.
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Fig. 6. Left: The product of the blurred event trains (the “correlation blur”) yields
a noisy estimate of the “overlap” as it is “seen” by the human observer. Right: The
“blurred correlation blur” is (for these parameters at least) a reasonable estimate of
the product of the original p.d.f.’s. This function is—at least for many purposes—far
more informative than the classical correlation function (which is zero!).
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Fig. 7. The two event trains in product space. Blurring this “image” implements “cor-
relation blur”. The autocorrelation is found on the diagonal of the space. Pooling over
areas “blurs the correlation”.

In this case it is possible to display the product space, see figure 7. In most
cases the high dimensionality of product space will prohibit its display.

If you have two overlapping or even non–overlapping regions, say two circular
discs (figure 8), they develop an overlap in the sense of correlation blur. When
the inner scale doesn’t allow a clear cut separation of the regions, we obtain a
kind of “tunneling” whereby points may change there membership and start to
belong to both regions. In figure 8 the circles actually overlap. We produced two
random point clouds by generating random points for unform distributions in
these circular areas. Figure 9 shows the point sets blurred to the inner scale.
The correlation blur (figure 10 left) reveals the “overlap” that is also visually
compelling. The blurred correlation blur (figure 10 right) yields a fairly smooth
(most of the random point structure has been removed) estimate of the overlap.
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Fig. 8. Left: Two overlapping circular disks in the plane. Right: Two overlapping “cir-
cular” point sets in the plane. The overlap is visually compelling, though no point of
the first set coincides with any point of the second set: As point sets the overlap is
empty.

Fig. 9. The blurred point sets

Fig. 10. At left the product of the blurred point sets (the “correlation blur”), at right
the “blurred correlation blur”. The blurred correlation blur is a good estimate of the
“overlap” defined by the “overall shapes” of the point clouds.
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The same procedure works in case of two disjoint uniform areas. The blur-
ring at the inner scale “generates fuzzy overlap”, although the degree of such
overlap is very small unless the regions are rather close on the inner scale. This
phenomenon is well known in human visual perception, where it sometimes leads
to erroneous observations in unfamiliar visual circumstances as in microscopy or
astronomy[6], or is used in the visual arts where the observer may pick a larger
than usual inner scale to generate novel (and sometimes unusual) visual connec-
tions. In the latter case the observer is aware of different geometrical structures
at at least a pair of distinctly different inner scales. Important as such cases
are in the arts, there exists hardly any proper psychophysical material on them.
Cases like “crowding” may be a case in point[7].
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Abstract. This paper considers scale invariance of statistical image
models. We study statistical scale invariance of the covariance structure
of jet space under scale space blurring and derive the necessary structure
and conditions of the jet covariance matrix in order for it to be scale in-
variant. As part of the derivation, we introduce a blurring operator At

that acts on jet space contrary to doing spatial filtering and a scaling
operator Ss. The stochastic Brownian image model is an example of a
class of functions which are scale invariant with respect to the operators
At and Ss. This paper also includes empirical results where we estimate
the scale invariant jet covariance of natural images and show that it
resembles that of Brownian images.

1 Introduction

Statistical image models are receiving growing attention, e.g. [1,2,3,4,5,6], espe-
cially due to the increasing popularity of Bayesian methods in image analysis
and computer vision, where such models are applied as a priori models of natural
images.

In this paper we discuss invariance properties of statistical image models.
We focus on stationarity and statistical scale invariance. Stationarity has the
consequence that there are no preferred positions in images and scale invariance
leads to no preferred scales. Both assumptions are generally agreed upon as being
reasonable for natural images, and scale invariance is furthermore supported by
various empirical findings, e.g. [7,8,4].

We consider the scale space jet representation of images and focus on the
second order statistics of the jet, i.e. the covariance structure. Assuming station-
ary image increments and scale invariance, we derive necessary conditions of the
covariance structure of jet space. As part of this derivation we introduce a blur-
ring operator At which acts on jet space as well as a scaling operator Ss which
acts as a scale normalization of the axes of jet space, i.e. the partial derivatives.
We express statistical scale invariance in terms of statistical invariance under
the combination of these two operators.

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 12–23, 2005.
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As an example of a scale invariant random function having stationary incre-
ments we consider Brownian images. Pedersen [4] suggest that natural images
are approximately scale invariant and have a covariance structure similar to
that of Brownian images. We also give some empirical evidence that supports
this claim.

The structure of this paper is as follows: The necessary covariance structure is
derived in several steps in sec. 2. We begin in sec. 2.1 by deriving the covariance
structure based on the assumption of stationarity. In sec. 2.2, we introduce the
blurring operator At, and finally the necessary structure of the covariance matrix
based on scale invariance is derived in sec. 2.3. We discuss the Brownian image
model in sec. 3 and present empirical results on natural images in sec. 4. Finally,
we conclude in sec. 5.

2 Statistical Invariance Properties

In this section invariance properties for statistical image models are introduced.
Let f : R2 → R be a two-dimensional gray scale image at scale s = 0. We assume
that f is a random function, and that f(0) = 0. The image fs at scale s > 0 is
defined through Gaussian blurring

fs(x) =
(
gs ∗ f

)
(x) =

∫
R2

gs(x − y) f(y) dy, gs(x) =
1

2πs
e−

x2
1+x2

2
2s .

Observe that the scale is parameterized in terms of the variance of the blurring
kernel. The higher order structure is given by the non-trivial derivatives

f (n,m)
s (x) =

∂n+m

∂xn
1 ∂xm

2

fs(x), (n,m) ∈ I
def= N2

0 \ {(0, 0)}.

We assume that f , and hence fs for every s > 0, has zero mean, E[f(x)] = 0,
and that the partial derivatives f

(n,m)
s (x) = ∂n+m

∂xn
1 ∂xm

2
fs(x) have second moments

for every x ∈ R2, s > 0 and (n,m) ∈ I.
We make two assumptions on the image structure: stationarity and scale

invariance. Stationarity states that the statistical properties of the increments
f(x) − f(y) only depends on the difference x − y. Formulated in terms of the
covariance structure this means that there exists covariance functions ρ : R2 →
R+ such that

Var
(
f(x)− f(y)

)
= ρ(x− y). (1)

Observe, that we do not assume the image increments to be isotropic, i.e. that the
variance function only depend on the distance |x−y|. Thus, stationarity is a more
general assumption than isotropy. Moreover, we emphasize that stationarity of
the image model itself is not assumed, e.g. we have f(0) = 0. If the image f at
scale s = 0 has stationary increments, then the same is true for the images fs

at every scale s > 0.
Scale invariance is formulated in terms of blurring, which can be interpreted

as zooming away, i.e. only features on the coarser scale are recognizable. In order
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to fully implement the zooming away, and hence scaling and not merely blur-
ring, the space should also be appropriately scaled. Let α > 0 be the exponent
connecting blurring scale s to the physical scale. Doing the scaling around the
origin x = 0, statistical scale invariance can be stated as the equivalence of the
probability distributions of the images fs(sαx) and ft(tαx) for every s, t > 0,
i.e. {

fs(sαx)
}

x∈R2

D=
{
ft(tαx)

}
x∈R2 .

Introducing the jet ∂n+m

∂xn
1 ∂xm

2
fs(sαx) = sαn+αm f

(n,m)
s (sαx) this implies the dis-

tributional equivalence{
sαn+αm f (n,m)

s (sαx)
}

(n,m)∈I

D=
{
tαn+αm f

(n,m)
t (tαx)

}
(n,m)∈I

(2)

for every x ∈ R2 and s, t > 0, i.e. the distribution of the scale normalized
derivatives does not depend on the scale.

In the following sections we investigate the implications of the imposed as-
sumptions on the structure of the covariance of the jet, which is given by

Φs =
{
Cov
(
f (j,k)

s (x), f (n,m)
s (x)

)}
(j,k),(n,m)∈I

∈ RI×I.

As shown in sec. 2.1 stationarity implies that the covariance Φs indeed does not
depend on the position x. Moreover, defining the anti-diagonals Ψ2n,2m by

Ψ2n,2m =
{

(−1)
i−k
2 + j−l

2 1i+k=2n,j+l=2m

}
(i,j),(k,l)∈I

, (3)

there exists positive constants cn,m(s) > 0 such that

Φs =
∑

(n,m)∈I

cn,m(s)Ψ2n,2m. (4)

In sec. 2.3 we prove that there exists an image model with stationary increments
and being scale invariant in the sense of eq. (2) if and only if α = 1

2 . For α �= 1
2

there only exist image models which are scale invariant in an infinitesimal sense.
In both cases these invariance properties holds true if and only if the constants
cn,m(s) satisfy the condition

cn+1,m(s) + cn,m+1(s) =
2αn + 2αm

s
cn,m(s). (5)

Finally, for α �= 1
2 we describe exactly how the infinitesimal scale invariant

models fail to be strict scale invariant, cf. eq. (11).

2.1 Stationary Image Models

In this section we give a characterization of the covariance structure for the jet
under the assumption of stationary image increments, cf. eq. (1). For positions
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x, y ∈ R2 employing f(0) = 0 yields

Cov
(
f(x), f(y)

)
= E[f(x) f(y)]

=
E
[(

f(x)− f(0)
)2]+ E

[(
f(y)− f(0)

)2]− E
[(

f(x)− f(y)
)2]

2

=
ρ(x) + ρ(y)− ρ(x− y)

2
.

Let positions x, y ∈ R2, scales s, t > 0 and differentiation orders (j, k), (n,m) ∈ I

be given. Interchanging the blurring integrals and the expectation and using
symmetry of the blurring kernel, i.e. gs(u) = gs(−u), we have

Cov
[
f (j,k)

s (x), f (n,m)
t (y)

]
= Cov

[∫
R2

(−1)j+k ∂j+kgs(x − u)
∂uj

1 ∂uk
2

f(u) du,
∫

R2
(−1)n+m ∂n+mgt(y − v)

∂vn
1 ∂vm

2

f(v) dv
]

=
∫

R2

∫
R2

gs(x− u) gt(y − v)
∂j+k

∂uj
1 ∂uk

2

∂n+m

∂vn
1 ∂vm

2

Cov
[
f(u), f(v)

]
du dv

=
∫

R2

∫
R2

gs(x− u) gt(y − v)
∂j+k+n+m

∂uj
1 ∂uk

2 ∂vn
1 ∂vm

2

ρ(u) + ρ(v)− ρ(u− v)
2

du dv

= −1
2

∫
R2

∫
R2

gs(x − u) gt(y − v)
∂j+k+n+m

∂uj
1 ∂uk

2 ∂vn
1 ∂vm

2

ρ(u− v) du dv

=
(−1)1+j+k

2

∫
R2

∫
R2

gs(x− u) gt(y − v)
∂j+k+n+m

∂vj+n
1 ∂vk+m

2

ρ(u− v) du dv

=
(−1)1+j+k

2

∫
R2

∫
R2

gs(x− y − u) gt(v)
∂j+k+n+m

∂vj+n
1 ∂vk+m

2

ρ(u− v) du dv.

Modulo the sign (−1)j+k the latter integral only depends on j, k, n,m via the
sums j +n and k +m. Moreover, since the variance function ρ must be even the
integral vanishes unless both j + n and k + m are even. Thus, we have showed
that Cov

[
f

(j,k)
s (x), f (n,m)

t (y)
]

for (j, k), (n,m) ∈ I equals

1j + n even, k + m even (−1)
j−n
2 + k−m

2 Cov
[
f

( j+n
2 , k+n

2 )
s (x− y), f ( j+n

2 , k+m
2 )

t (0)
]
.

We can recap this in terms of the covariance structure Φs ∈ RI×I of the entire
jet
{
f

(n,m)
s (x)

}
(n,m)∈I

at position x and scale s,

Φs =
{
Cov
(
f (j,k)

s (x), f (n,m)
s (x)

)}
(j,k),(n,m)∈I

=
{
Cov
(
f (j,k)

s (0), f (n,m)
s (0)

)}
(j,k),(n,m)∈I

=
∑

(n,m)∈I

cn,m(s)Ψ2n,2m.

(6)

for some positive constants cn,m(s) > 0 and where the anti-diagonals Ψ2n,2m are
defined by eq. (3)
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2.2 Gaussian Blurring in Jet Space

In this section we consider the representation of Gaussian blurring in the jet
space domain. We assume that the image fs at scale s > 0 can be represented
by its Taylor series around every x, i.e.

fs(y) =
∑

(n,m)∈N2
0

f
(n,m)
s (x)
n!m!

(y1 − x1)n(y2 − x2)m, f (n,m)
s (x) =

∂n+mfs(x)
∂xn

1∂x
m
2

.

Consider the operators Jx, Tx taking the image into the jet space of partial
derivatives at x and combining the jet into the Taylor series, respectively,

Jx(fs) =
{

∂n+mfs(x)
∂xn

1 ∂xm
2

}
(n,m)∈N2

0

,

Tx

({
jn,m

}
(n,m)∈N2

0

)
(y) =

∑
(n,m)∈N2

0

jn,m

n!m!
(y1 − x1)n(y2 − x2)m.

The operators Tx ◦ Jx and Jx ◦ Tx take the image and the jet, respectively, into
themselves. Gaussian blurring of the jet by scale t is given by

f
(j,k)
t+s (x) =

R R

e−
(y1−x1)2+(y2−x2)2

2t

2πt
f (j,k)

s (y) dy1 dy2

=
R R

e−
(y1−x1)2+(y2−x2)2

2t

2πt
(n,m)∈N2

0

f
(j+n,k+m)
s (x)

n! m!
(y1 − x1)n(y2 − x2)mdy1dy2.

Interchanging the integrals and the sum we find

f
(j,k)
t+s (x) =

(n,m)∈N
2
0

f
(j+n,k+m)
s (x)

n! m!
R R

e−
(y1−x1) 2+(y2−x2) 2

2t

2πt
(y1 − x1)n(y2 − x2)mdy1dy2

=
(n,m)∈N2

0

tn+m f
(j+2n,k+2m)
s (x)

2n+mn! m!
.

If the N2
0 × N2

0-matrix At is defined by

At =
{

1j≤n,j+n even,k≤m,k+m even
(t/2)

n−j+m−k
2

(n−j
2 )! (m−k

2 )!

}
(j,k),(n,m)∈N2

0

, (7)

then the effect of blurring on the jet is given by

Jx(fs+t) = Jx(gt ∗ fs) = At Jx(fs).

The matrix At is invertible being upper triangular with ones on the diagonal,
and the matrix inverse is given by

A−1
t =

{
1j≤n,k≤m,j+n even,k+m even

(−t/2)
n−j+m−k

2

(n−j
2 )! (m−k

2 )!

}
(j,k),(n,m)∈N2

0

.
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Thus, the definition of At for t > 0 in eq. (7) can be extended to t < 0 such
that A−1

t = A−t. Doing this we have the group property As At = As+t for every
s, t ∈ R. This explains our choice to parameterize the scale with the variance in
the blurring kernel.

Deblurring can be achieved by fs = Tx

(
A−1

t Jx(ft+s)
)
, which complies with

the work by Florack et al. [9]. Florack et al [9] introduces the multi-scale local
jet image representation using not only the spatial derivatives but also including
derivatives with respect to scale. They construct polynomial parametric repre-
sentations of the local image structure based on the multi-scale local jet. This
approach allow them, among other things, to do deblurring of images by extrap-
olation of the given local jet.

In the application in sec. 2.3, we discard the zeroth order structure. For this
we introduce the jet

Jx,I(fs) =
{

∂n+mfs(x)
∂xn

1 ∂xm
2

}
(n,m)∈I

.

With a slight abuse of notation the blurring At operates on Jx,I(fs) by ne-
glecting the zeroth order structure. Doing this we have Jx,I(fs+t) = At Jx,I(fs).
Moreover, an application of the binomial formula yields that

At Ψ2n,2m A∗
t =

∑
(i,j)∈I:i≤n,j≤m

(−t)n−i+m−j

(n− i)! (m− j)!
Ψ2i,2j , (8)

2.3 Scale Invariance in Jet Space

In this section, we investigate the scale invariance property in jet space. For
s > 0, let the operator Ss on jet space be defined by

Ss

({
jn,m

}
(n,m)∈I

)
=
{
sn+m jn,m

}
(n,m)∈I

.

Then Ss describes the scale normalization going from scale st to scale t. Verifi-
cation using the matrix representation of the operators shows the commutation
relation At Ss = Ss Ast. This identity can also be proven using the interpreta-
tions as blurring and scaling, respectively. The scale invariance property eq. (2)
can be recapped as

S(s+t)α At Jx,I(fs) = S(s+t)α Jx,I(fs+t)
D= Ssα Jx,I(fs),

and hence
Jx,I(fs)

D= S( s+t
s )α At Jx,I(fs). (9)

An equation for the covariance structure Φs of the jet is found by taking the
covariance of both sides of eq. (9). For simplicity of the equations we, however,
insert the blurring st instead of t. Doing this eq. (9) implies

Φs = Cov
(
Jx,I(fs)

)
= Cov

(
S(1+t)α Ast Jx,I(fs)

)
= (S(1+t)α Ast)Cov

(
J0,I(fs)

)
(S(1+t)α Ast)∗

= (S(1+t)α Ast)Φs (S(1+t)α Ast)∗.
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Thus, a scale invariant covariance structure Φs at scale s is an eigenvector under
the linear mappings Φ 	→ (S(1+t)α Ast)Φ (S(1+t)α Ast)∗ with eigenvalue 1 for
every relative blurring factor t > 0. We search for a solution also satisfying
the stationarity assumption eq. (6). Inserting Φs =

∑
(n,m)∈I

cn,m(s)Ψ2n,2m the
eigenvalue problem reads∑

(n,m)∈I

cn,m(s)Ψ2n,2m = Φs = (S(1+t)α Ast)Φs (S(1+t)α Ast)∗

(8)
=

∑
(n,m)∈I

((
1 + t

)2αn+2αm ∑
i,j∈N0

(−s t)i+j

i! j!
cn+i,m+j(s)

)
Ψ2n,2m

and hence

cn,m(s) =
(
1 + t

)2αn+2αm ∑
i,j∈N0

(−st)i+j

i! j!
cn+i,m+j(s). (10)

A solution to this eigenvector equation should hold true for every t > 0. Espe-
cially, taking the derivative with respect to t at t = 0 we find

0 = (2αn + 2αm) cn,m(s)− s
(
cn+1,m(s) + cn,m+1(s)

)
,

which is equivalent to eq. (5). It can now be checked whether a solution to the
infinitesimal eigenvector problem, i.e. a vector cn,m(s) satisfying eq. (5), also
satisfy eq. (10). In this case the addition formula for binomial coefficients gives

(
1 + t

)2αn+2αm ∑
i,j∈N0

(−st)i+j

i! j!
cn+i,m+j(s)

=
(
1 + t

)2αn+2αm ∑
k∈N0

(−st)k

k!

k∑
j=0

k!
(k − j)! j!

cn+k−j,m+j(s)

(5)
=
(
1 + t

)2αn+2αm ∑
k∈N0

(−st)k

k!
(2α)k

sk

(n + m + k − 1)!
(n + m− 1)!

cn,m(s)

=
(

(1 + t)α

√
1 + 2αt

)2n+2m

cn,m(s).

This implies that

(S(1+t)α Ast)Φs (S(1+t)α Ast)∗ = S (1+t)α√
1+2αt

Φs S∗
(1+t)α√
1+2αt

,

and hence
Φs = (S√

1+2αt Ast)Φs (S√
1+2αt Ast)∗. (11)

Thus, the solution to the infinitesimal eigenvector problem is a solution to the
global eigenvector problem if and only if α = 1

2 . For α �= 1
2 we have found the

solutions to the infinitesimal eigenvector problem, and described exactly how
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they fail to be solutions to the global eigenvector problem. E.g. for α = 1 we
have

Φs = (S√
1+2t Ast)Φs (S√

1+2t Ast)∗.

Finally, we remark that there is a wide class of solutions to eq. (5). We mention

cn,m(s) = γ (s/α)−n−m (n + m− 1)!,

cn,m(s) = γ (s/α)−n−m (2n)! (2m)!
2n+m n!m! (n + m)

(12)

with γ being a constant. The latter solution correspond to the covariance struc-
ture for the Lévy Brownian motion. More about this in the following section.

3 Brownian Images: A Scale Invariant Model

The Brownian image model, also known as the Lévy Brownian motion, is an ex-
ample of scale invariant random functions. A Brownian image B(x) is a Gaussian
random function with stationary independently identically Gaussian distributed
increments B(x + ∆x) − B(x) having zero mean and variance proportional to
the length |∆x|, i.e. {B(x + ∆x)−B(x)} ∼ N (0, σ0 |∆x|).

Notice that the Brownian image B(x) is nowhere differentiable with proba-
bility 1. But the scale space of the Brownian model Bs(x) = (gs ∗ B)(x) is C∞

differentiable, hence we can compute the scale space jet Jx(Bs).
The scale space of a Brownian image induces a Gaussian distribution in jet

space, {Jx,I(Bs)} ∼ N(0, Σs), where the covariance structure is given by

Σs = Cov
(
Jx,I(Bs)

)
=
{

Cov
(
B(i,j)

s (x), B(k,l)
s (x)

)}
(i,j),(k,l)∈I

. (13)

From sec. 2, we know that the covariance structure of a scale invariant random
image with stationary increments is given by eq. (6) and (12). To summarize,
for n = i + k and m = j + l both even we have

Cov
(
B(i,j)

s (x), B(k,l)
s (x)

)
= (−1)

n−j
2 + m−k

2
γs−

n+m
2 n!m!

2n+m (n/2)! (m/2)! (n + m)
, (14)

and otherwise the covariance vanishes. Here γ acts as a global variance parameter
of B(x).

It is interesting to note that this corresponds to the covariance derived by
Pedersen [4]. In [4] the jet covariance is stated in terms of the inner product
between the two random functions B

(i,j)
s (x) and B

(k,l)
s (x),

Cov (〈Jx,I(Bs)〉) =
{

Cov
(〈

B(i,j)
s (x), B(k,l)

s (x)
〉)}

(i,j),(k,l)∈I

. (15)

Due to the ergodicity of the Brownian model this is equivalent to computing the
jet covariance as in eq. (13).
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Fig. 1. Examples of the natural images used in the experiments. The resolution of the
gray value images in the database is 1024 × 1536 pixels.

From eq. (14) we observe that the jet covariance structure of a Brownian
image is scale invariant under change of scale in the spatial domain, Bs(x) =
(gs ∗B)(x), if we introduce scale normalized derivatives in the jet operator

Jx,I(Bs) =
{
s

n+m
2

∂n+mBs(x)
∂xn

1 ∂xm
2

}
(n,m)∈I

.

4 Connection with Natural Images

The Brownian image model is one example of a scale invariant random function.
Another example of a nearly scale invariant random function is natural images.
Pedersen [4] suggest that the covariance structure of natural images is similar
to that of Brownian images as defined in sec. 3. Here we give further empirical
evidence of this claim.

We use 1126 images from the van Hateren natural stimuli collection [10] for
the experiments conducted in this section. Examples of these images can be
found in fig. 1. For every image we compute the 4-jet

{
f

(n,m)
s (x)

}
(n,m)∈I:n,m≤4

at 10 different scales in the range s ∈ [4, 4096] using scale normalized derivatives
f

(n,m)
s (x) = s

n+m
2 ∂n+m

∂xn
1 ∂xm

2
fs(x) excluding the zeroth order term. For every image

we pick at random the 4-jets at 6000 image points. This leads to a data set of
6.7 million 4-jets per scale. For each scale s, we estimate the covariance matrix
Cs of the 4-jet. Notice that this procedure leads to an implicit assumption of
stationarity of natural images.

In order to show that the covariance structure of natural images resemble
that of Brownian images, we have to verify that the covariance matrix Cs for
natural images has the same structure as derived in this paper and given in
eq. (13) and (14).

The signs of the 4-jet covariance matrix Cs follows the theoretical alternating
signs, as given by Ψ2n,2m defined in eq. (3), up to and including scale s = 900.
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Fig. 2. Signs of the covariance matrix for the 4’th order jet. Black pixels correspond
to −1, white pixels to 1, and gray to 0. The numbering of the axes correspond to the
usual ordering Lx, Ly , Lxx, Lxy , . . ..

Beyond this scale, sign errors start to appear. The alternating signs are visualized
in fig. 2.

The derivation in sec. 2 leads to a sparse covariance matrix with only a few
non-zero elements. These non-zero elements have an intricate proportionality
among them. In order to verify whether natural images exhibit this structure,
we compute the ratio between the non-zero elements indexed by i of the natural
image covariance Cs and the theoretical covariance Φs, Ci

s/Φ
i
s. We divide this

ratio by the mean µs = 1
N

∑N
i=1 Ci

s/Φ
i
s in order to remove the multiplicative

contrast factor of the natural images. Fig. 3 shows a plot of Ci
s/(Φ

i
sµs) for the

indices i of non-zero elements at different scales s. The spikes seen, especially at
high scales, in fig. 3 corresponds to the following covariances in order of appear-
ance: E[fyfy], E[fy, fyyy], E[fyy, fyy], E[fyy, fyyyy], E[fyyy, fy], E[fyyy, fyyy],
E[fyyyy, fyy], E[fyyyy, fyyyy]. This consistent bias along the y direction could be
explained by a dominating horizon in the images used in the experiment.

As can be seen in fig. 4, the elements of the covariance matrix Cs, which
the theory predicts should be zero for Brownian images, is also close to zero for
natural images.

To conclude, natural images appear to have a covariance structure similar
to that of Brownian images within a limited range of scales. This scale range
is bounded from below and above by the inner and outer scales of the involved
images. For the natural images and the sampling of the scale axis used in these
experiments, the range appear to be approximately s ∈ [4, 169]. The results are
not as clear cut as those presented in [4]. The difference is that Pedersen only
considered the eigenvalues of the covariance matrix, contrary to what we do here,
namely compare all non-zero elements of the covariance matrix.

A consequence of the similarity between natural and Brownian images is that
natural images also have an approximately scale invariant covariance structure
within the above mentioned range of scales. Hence, to approximation there are
no preferred scale in the visual world (at least within the range of valid scales).
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While conducting the experiments, we assumed both stationarity and
isotropy of natural images, i.e. that there are no preferred position or orien-
tation in the visual world. In general, we find this assumption reasonable, but
the images in the van Hateren database [10] apparently have a bias towards the
y direction, hence violating the isotropy assumption.

5 Conclusion

We studied scale invariance of the covariance structure of jet space, where scale
invariance was defined in terms of the jet blurring operator At and the jet scaling
operator Ss. Under the assumptions of stationary increments and statistical
scale invariance defined in terms of the combination of At and Ss, we derived
the necessary structure of the jet covariance matrix. We then introduced the
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stochastic Brownian image model as an example of a class of functions that are
scale invariant under the operators At and Ss. The paper also include empirical
results that show that the covariance matrix of natural images is approximately
scale invariant with similar structure as derived in sec. 2.

We show that strict scale invariance implies α = 1/2, which means that the
standard deviation s1/2 is consistent with the physical scale. That is, the usual
scale normalization based on dimensionality analysis is consistent with scale
invariance.

An interesting question for further research is whether there are other models
that are stationary and scale invariant as defined in sec. 2 which would be a
better model of natural images. We know that natural images are not Gaussian
[11,3], hence higher order statistics is needed to fully capture the distribution of
images, which means that we should extend the analysis to include higher order
moments.
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Abstract. The Symmetry Set (SS) and its representation in parameter
space, the pre-Symmetry Set, can be used to describe a shape with a
linear data structure containing strings. As shape descriptor one specific
string can be chosen. This string represents not only the major axis of the
shape, but it also contains information of the complete shape. The string
is augmented with information about the special points along the (pre-)
Symmetry Set that it resembles. Changes in this simple line structure
are directly related to so-called transitions (topological changes) of the
SS and the Pre-SS . It also carries information about the skeleton, or
Medial Axis.

1 Introduction

In shape analysis, much effort has been put into the research on the skeleton,
or Medial Axis [1], as a way to represent the shape in a more simplified way. As
it was soon realized, the Medial Axis it itself didn’t carry enough information
[4] and sophisticated extensions were built, like the Shock Graph method [12].
Basically, each point on the Medial Axis is endowed with additional structure
related to the distance to the shape itself or related to its neighbours. Next, the
potential changes of the Medial Axis were investigated, yielding a set of possible
transition [5]. In that way different shapes can be related to each other for shape
indexing and retrieval [10,11].

The results on transitions boiled down from the results on the possible tran-
sitions of the Symmetry Set. This set, containing the Medial Axis as subset, has
been thoroughly studied in [3]. Its transitions are described in [2]. The Symme-
try Set has its advantage in being easily described in a mathematical sense, but
its spatial visualization not suited to human perception. So most of the research
has been focused on the (augmented) Medial Axis [6].

Recently, however, a data structure was presented for the Symmetry Set [9],
that can be visualized by a sequence of nodes, that are pair wise joined.

In the pre-Symmetry Set special branches may be present. These branches
are spanned by the entire shape and are called essential loops. There are either
zero or two essential loops for a closed non self-intersecting curve. If there are
two essential loops, each contains information about the complete shape. It then
suffices to select only one of these branches instead of taking the complete set

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 24–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Essential Loops and Their Relevance for Skeletons and Symmetry Sets 25

as in [9]. This branch can easily be found using the pre-Symmetry Set [7], the
Symmetry Set in parameter space. Augmented with special points of the (pre-)
Symmetry Set, this branch represents the shape. The branch can be described
as a simple line sequence which allows modifications based on known changes
of the (pre-) Symmetry Set. We show how this structure can be obtained and
describe its relation to the skeleton, or Medial Axis.

2 Symmetry Set

The Symmetry Set is defined as the closure of the loci of the circles tangent to a
shape, see Figure 1a. The shape is given by the oval. Inside a circle is tangent to

Fig. 1. a) Definition of the Symmetry Set. See text for details. b) A shape and the

Symmetry Set.

it at two locations, so the unit normals N1 and N2 are equal for the shape and
the circle. The centre of the circle is found by multiplying minus the radius r
with the normals. Note that this is also a Medial Axis point. Next, also outside
a circle is tangent to the shape at two locations, where the unit normals N1 and
N4 are equal for the shape and the circle. From this image it follows immediately
that a point on the shape relates to at least two points on the Symmetry Set, in
contrast with the Medial Axis.

Another tool that is used in the analysis of the Symmetry Set is the evolute.
Let κ be the curvature of a shape S, then the evolute is given by S + N/κ.
In Figure 1b an oval, its Medial Axis (vertical line) and Symmetry Set (all line
segments) are shown.

2.1 Points on the Symmetry Set

Due to the geometry of the shape and the order of tangency, five distinct types
of points are generic on the Symmetry Set [3], see Figure 2. An A2

1 point is the
“common” midpoint of a circle tangent at two distinct points of the shape. An
A3 point is the midpoint of a circle located at the evolute and tangent at the

N1

N2

N4

s.N1 s.N4

r.N1

r.N2
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point of the shape with the local extremal curvature. The endpoint of a branch of
the SS. An A1A2 point is the midpoint of a circle tangent at two distinct points
of the shape but located at the evolute. A turning point on the SS. An A3

1 point
is the midpoint of one circle tangent at three distinct points of the shape. An
intersection of three branches of the SS. An A2

1/A
2
1 point is the centre of two

circles tangent at two pairs of distinct points of the shape with different radii.
Since this produces only an intersection due to projection on the plane, it is
omitted in what follows.

A3

A2A2

A1A2

A1
3

200 400 600 800

200

400

600

800
A3

A1A2

A1
3

Fig. 2. a) Close up of the Symmetry Set with annotated special points and the evolute

(joined points). b) Visualizing the Pre-Symmetry Set with annotated special points.

2.2 Transitions

In the following we briefly state the possible transitions of the SS. For more
details the reader is referred to [2].

At an A4
1 transition a collision of A3

1 points appears. Before and after the
transition six lines, four A3

1 points occur. The result on the MA is a reordering
of the connections of two connected Y-parts of the skeleton. For the SS, however,
the Y-parts are the visible parts of SS branches going through A3

1 points. So for
the SS representation nothing changes.

At an A1A3 transition, a cusp of the evolute (and thus an end part of a SS
branch including a A3 point) intersects a branch of the SS and an A3

1 point as
well as two A1A2 points are created or annihilated. The A3

1 point lies on the A3

containing branch, while the other branch contains a “triangle” with the A3
1 and

the A1A2’s as corner points.
The A4 transition corresponds to creation or annihilation of a swallowtail

structure of the evolute and the creation or annihilation of the enclosed SS
branch with two A3 and two A1A2 points.

At an A2
1A2 transition two non-intersecting A1A2-containing branches meet

a third SS branch at the evolute, creating two times three different branches
intersecting at two A3

1 points. Or the inverse transition occurs.
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The A2
2 moth transition describes the creation or annihilation of a SS branch

containing only four A1A2 and no A3 points. These points lie pair wise on two
opposite parts of the evolute. Each point is connected via the SS to the two
points on the opposite part of the evolute.

When going through an A2
2 nib transition, two branches of the SS, each

containing an A1A2 point, meet and exchange a sub-branch.

3 Pre-symmetry Set

The pre-SS is obtained by visualizing the Symmetry Set in parameter space, so
essentially it is visualizing the pairs of points on the shape at which the circl is
tangent. This is done in Figure 2b.

On the axis one finds the parameters pi and pj. The black curved lines
represent the zero crossings. The diagonal is formed by the points (pi, pi) and
can therefore represent the shape itself.

Firstly, it needs to be remarked that the diagram repeats across its borders:
the parameter moves along a closed curve. So the diagram represents a torus.
Furthermore, the axis are to be identified, since they both relate to the same
parameter along the shape. So the image is symmetric in the diagonal and the
plot represents in fact a Moebius strip, with the diagonal as its boundary.

In this Figure, one can see two curves ranging over the entire domain and
one closed loop (bottom left with parts bottom right and (the symmetric coun-
terpart) top left).

3.1 Points on the Pre-symmetry Set

Since curves in the pre-SS don’t intersect, one easily obtains separate branches.
At A3 points, one has pi = pj , since they are located at the diagonal and don’t
concern two different points on the shape. Note that these points arise from local
extrema of the curvature on the shape. These extrema alternate being minima
and maxima. At A1A2 points the SS hits the evolute and is reflected. This
implies that one of the two involved points, say pi, is also reflected. The pre-SS
therefore has a horizontal or vertical tangent. At an A3

1 point three parts of
the SS intersect. In the pre-SS these points are detectable as the occurrence of
the triple point sets (p1, p2), (p1, p3), and (p2, p3) (and, of course, its diagonal
symmetric counterpart). This is visualized by the box-set in Figure 2b. All other
points are A2

1 points.

3.2 Transitions

The list of transitions valid for the SS, also apply to the pre-SS. In the following
we state the consequences of these events for the pre-SS, see [8] for details.

At an A4
1 transition a collision of A3

1 points appears. This implies that in
the pre-SS four box-sets (see Figure 2b), each combining the three positions,
coincide. Before and after the transition there are six curves with, each of them
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two A3
1. The only thing that changes is the ordering of each pair of A3

1 points on
each curve. This boils down to inverting the order of the four box-sets.

At an A1A3 transition, one curve goes through an inflection point and changes
from zero to two local extrema (horizontal or vertical tangents) - which are A1A2

points. Outside the two extrema two positions of the A3 are located, the third
is located on the curve that represents the other SS-branch involved in the
interaction.

The A4 transition corresponds to creation or annihilation of a closed loop on
the diagonal in the pre-SS, thus containing two A3 points on the diagonal and
two A1A2 points as the horizontal and vertical tangents (note that the diagonal
is a axis of symmetry).

At an A2
1A2 transition two branches with each an A1A2 point surrounded by

two A3
1 points meet and leave without the A3

1 points. The A1A2 points have the
same tangent. On a third branch two A3

1 points meet and vanish. Or, of course,
the opposite (creation) event occurs.

When going through an A2
2 moth transition, a closed off-diagonal loop is

created or annihilated in the Pre-SS. It cannot intersect the diagonal. Note that
in the visualization also a loop occurs due to mirroring in the diagonal.

When going through an A2
2 nib transition, two branches approach with their

local A1A2 points with the same kind of tangent. They meet, forming an inter-
section, exchanging connection and afterwards they move away with again the
same kind of tangent, but opposite to the one before (horizontal vs. vertical, or
vice versa).

4 Essential loops

Observing the pre-SS of Figure 2b, there are exactly 2 curves that are spanned
by all points on the shape, i.e. the complete pre-SS diagram domain is needed
to represent these curves [7]. They are called essential loops.

Recall from section 3.1 that the intersections of the curves (or loops, as they
are closed) in the pre-SS diagram with the diagonal represent the local extrema
of the shape. They can be numbered sequentially, e.g. starting at the origin.
Consequently, the starting point can be chosen such that even numbers relate
to maxima, and odd numbers to minima

Each curve that intersects the diagonal, intersects it twice, since a branch
with a begin point needs to have an end point. Such curves can be assigned the
two numbers of the intersection points.

When tracing such a curve from the first diagonal point to the second one via
the upper diagonal part of the diagram, one can note that for essential loops the
second point is reached via the lower diagonal part of the diagram, while non-
essential loops reach the diagonal via the upper diagonal part. Consequently, on
these curves, the number of both horizontal and vertical A1A2 points is odd for
non-essential loops (“as the curve needs to return”), and even for essential loops.
The essential loops cross the boundary an odd number of times, while for the
non-essential loops this number is even.
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Theorem 1. Any non-essential loop must have an even and an odd number.
Essential loops have to appear pair wise with an even-even and an odd-odd num-
bered intersection.

Proof. Consider the allowed transitions and the evolution of an ellipse, with two
essential loops, to an arbitrary shape. At this evolution two events are possible:
closed loops can be created and swaps may occur. At A4’s closed loops are created
with an even and an odd number. In an A2

2-nib, two branches (and therefore two
endpoints) are exchanged. Without loss of generality we can take two curves
with intersections (1, 2), (3, 4) that can perform two changes, A: (1, 3), (2, 4) or B:
(1, 4), (2, 3). In case B, after the swap again two non-essential loops are present,
they have both even-odd numbered intersections with the diagonal, and one
loop is encapsulated by the other; In case A, an odd-odd and even-even pair is
created. Since the loops may not intersect each other in the pre-SS diagram, this
can only be established when the new curves starting in the points 1and 2 in the
upper diagonal part do not return to the diagonal in that part, but approach the
diagonal in the lower diagonal part. Then, however, they range over the entire
diagram and have become essential loops. Obviously, these transitions can also
occur in the opposite direction.

In the following, we distinguish between essential loops that connect minima
of the curvature (min-min), and those that connect maxima (max-max).

Definition 1. If at least two essential loops are present, a maximal essential
loop (MEL) is identified as an essential loop with the two intersections of the
diagonal relating to two local maxima of the curvature.

4.1 On Maximal Essential Loops

Although the situation with two essential loops may seem generic, the transitions
do not prohibit the existence of any even number of essential loops. In practice,
besides two, the case with zero essential loops has been observed. In order to say
more on this, first the following result is needed:

Theorem 2. Two A3
1 points can be connected by at most one path along the SS

branches.

Proof. Consider two A3
1 points that are tangent to the shape at the points

(i1, j1, k1) and (i2, j2, k2) with i1 < j1 < k1 and < k2 < j2 < i2. Assume,
without loss of generality, that k1 < k2. Then the two points can only be con-
nected via SS branches that are spanned by pairs of intervals along the shape
that are subsets of the intervals (k1, k2) and (i2, i1) - one clockwise, the other
anti-clockwise (say left and right). For the latter interval it is taken into account
that the end and begin point are joined. Each pair of intervals ends when an
A3

1 point is reached. Then a new pair of intervals starts, where at least one of
the two intervals has the start point equal to the end point of one of the two
old intervals. So at most on one of the two sides of the shape a jump can occur.
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Two different paths require two disjoined sets of intervals; there can not be two
points on the shape that contribute to both paths. On the contrary, each point
on the shape contributes to both paths, since that occurred at each A3

1 point and
the SS branches depend continuous on the shape. Then each interval connects
to the same A3

1 point, i.e. the interval is empty. There cannot be two different
paths.

One way to interpret this result is that a closed, non self-intersecting shape
cannot generate a SS with a cycle. Then the following holds:

Theorem 3. A part of the MEL is visible at the Medial Axis.

Proof. As the MEL starts and ends in locations related to local maxima of the
curvature, it starts and ends inside the shape. Regarding the part of the MA
inside the shape, its end points also relate to local maxima of the curvature.
Second, to the MA all points on the shape contribute pair-wise. If the MEL
remains within the shape, it must coincide with the MA. If it is also present
outside the shape, it must have two A3

1 points in common one “to get out” and
one “to get in”. Since cycles cannot occur, the MEL and the MA share at least
the path between these A3

1 points.

Theorem 4. A MEL links two A3 end points of the Medial Axis.

Proof. The end points of the MA are due to local maxima of the curvature.
On the other hand, not all end points of a SS branch become visible on the
MA. When a new branch (a non-essential loop) is created in an A4, the end
point related to the maximal curvature only become part of the MA after an
A1A3 transition - when it intersects the MA [2,8,5]. So if the end points of the
MEL are not part of the MA, the entire MEL cannot intersect the MA. This
contradicts the previous Theorem.

Theorem 5. A MEL defines a main axis to the Medial Axis, being the linking
two A3 points along the Medial Axis.

Proof. This follows directly from the previous two Theorems.

Using these results, we have the following:

Theorem 6. There is at most one MEL for a closed, non self-intersecting shape.

Proof. Suppose there are two MELs. They have endpoints (p1, p3) and (p2, p4)
with p1 < p2 < p3 < p4, since they cannot intersect in the pre-SS. Then there
is a path along the MA from the points determined by p1 and p3. A second
path connects p2 and p4. These paths necessarily need to have at least one
point in common. If they cross, it occurs at an A4

1 point, a circle tangent at
four points simultaneously, which is non-generic. If they would meet in an A3

1

point, they need to have a segment of the MA ranging between two A3
1 points

in common, since they both define MA parts. But then the two MELs coincide
at this segment, which is also non-generic.
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Consequently, there are either zero or two essential loops. Since the essential
loops are spanned by the entire domain, they contain local symmetry information
of the whole shape. So we could say that in the case that there are two essential
loops, we can identify two global axes of symmetry, while in the case of no
essential loops there are no such axes. Since there are two spatial dimensions,
there are generically not more that two global axes of symmetry to be expected.

Theorem 7. In the case that there is a MEL, each A3
1 point on the MEL that

is part of the Medial Axis is encountered twice, so of the three distinct curves
intersecting at this A3

1 point, two belong to the same SS branch.

This states that at a fork in the Medial Axis (where three parts meet) two
of the parts contribute to the same SS branch and therefore that the begin and
end point of the MEL are the begin and end point of a connected part of the
Medial Axis.

Proof. This is a direct consequence of the fact that there is exactly one path
between two A3

1 points. As the A3 points are connected by the MEL, necessarily
the A3

1 points on the MA connect two MA parts that belong to the MEL.

As a consequence, the MEL can be divided in two A3 − A3
1 parts and some

A3
1 − A3

1 parts, with each A3
1 appearing twice as a begin and end point. The

part of a MEL (e.g. in Figure 4) that connects the two A3 points, contains an
even number of A1A2 points. When starting at an A3 point of the MEL and
following the MEL, at a certain moment - before an A1A2 is encountered - an
A3

1 is met. Here a horizontal or vertical jump in the pre-SS diagram can be
taken to an other part of the MEL, skipping an even number of A1A2 points, see
also Figure 5. Therefore, a subset of the MEL can be taken that doesn’t contain
A1A2 points and consists of two A3 − A3

1 parts and some A3
1 − A3

1 parts, with
each A3

1 appearing twice as a begin and end point.
All closed shapes can be obtained from the ellipse by adding perturbations,

and similarly their pre-SS diagram are obtained by adding perturbations, i.e. the
transitions [8]. For the ellipse the maximal essential loop is simply represented
by A3−A3, while perturbations of the shape yield a more complicated structure:
A3 − X − A3, where X is solely determined by the transitions of the pre-SS.
In general, X will contain several A1A2 and A3

1 points. It therefore remains to
investigate the possible structures and changes of X .

4.2 Transitions of an Essential Loop

From the transitions of the pre-SS, the transitions on the essential loop can be
derived directly [5,8]. In the following, i and j are indices and X and Y parts of
the sequence. Examples will be given in the next section.

At an A4
1 transition pairs of A3

1[i]−A3
1[i+1] points on the pre-SS curve meet

(coincide) and continue afterwards.
At an A1A3 transition, the curve gets or looses a string A3

1[i] − A1A2[j] −
A1A2[j + 1]−A3

1[i].
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The A4 transition doesn’t contribute to an essential loop; it only creates a
non-essential loop.

At an A2
1A2 transition the sequence A3

1[i] − A3
1[j] may be created or anni-

hilated. Note that since A1A2 points are required for this transition, it affect a
part that doesn’t contribute to the MA.

At an A2
2 moth transition nothing happens on the essential loop.

When going through an A2
2 nib transition, the structure is either locally

expanded or simplified if the pre-SS transition involves a closed moth loop:
from X1 − Y − X2 to X1 − X2 or vice versa, with the changes at two A1A2

points. It Implies a rotation of information when the pre-SS transition involves
a curve that intersects the diagonal. Then the sequence A3[1]−X1−A3

1[j]−X2−
A1A2[i]−A3

1[j]−Y changes to A3[2]−X3−A3
1[j]−X4−A1A2[i]−A3

1[j]−Y . As
this implies a change of end point, it also describes the possibility of pair wise
removing or creating essential loops.

5 Example

As an example shape clarifying the theory presented above, we took a fish shape
from the data base considered in [10,11]. This fish shape is shown in Figure
3, with its SS (left) and its pre-SS (right). As we allowed ourselves no data
modification after the parameterization was obtained, the results are non-aligned
sets of points.
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Fig. 3. Left: Fish, with its SS. Right: Pre-SS of the fish.

Its MA containing essential loop is the branch ranging from top left to
bottom down. It is also depicted in Figure 4. On the right, the SS branch is
shown. It ranges from the top left tail of the fish to its nose. Since the pre-SS
is symmetric, it suffices to investigate on half of the branch in the pre-SS. This
is visualized in Figure 5. The branch starts top left (equivalent to the origin of
the pre-SS - at the diagonal) and ends bottom right, again at the diagonal. It
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Fig. 4. The maximal essential loop in the Pre-Symmetry Set (left) and its related SS

branch of the fish

traverses several A1A2 points, at horizontal and vertical tangents, annotated by
numbers, and A3

1 points, annotated with capitals and connected by vertical or
horizontal lines (parts of the boxes).

A simple representation of the string - and the shape - thus boils down to be
(let A3[1] and A3[2] be the end points) A3[1]− I − II − III − IV −A3[2] with

– I = A− 1− 2−A,
– II = B − 3− 4−B,
– III = C −D − 5− 6−D − 7−−E − 8− 9− E − 10− C, and
– IV = F − 11− 12− F .

Note that III can be subdivided into

– III = C − V − 7− V I − 10− C, with
– V = D − 5− 6−D and
– V I = E − 8− 9− E.

So each of these sub parts may have been arisen from A1A3 transitions.
Next, we can see what happens at an A2

2-nib transition. Let the points 5
and 9 meet and exchange branches. Then point 4 would be connected to 10 via
point - say - 5, while the other branch is a closed loop with points 6,7,8, and
9. This resembles a simplification of part III with the removal of the parts V
and V I and point 5 taking over the role of point 7. The effect of two subsequent
A1A3 transitions removing these two parts would have the same impact on the
essential loop (albeit that then no closed loop remains).

In this figure the dotted segments represent the MA part of the essential
loop, i.e. the MA lines connecting the top left tail to the nose of the fish. It is
easily found as the subset A3[1]−A,A−B,B − C,C − F, F −A3[2]. The MA
segments in the complete pre-SS is shown in Figure 6a see [7] for more details
on deriving this structure and its left-right ordering.

One can see 4 extra diagonal intersecting part, representing the four other
MA branches, labelled 2,3, 5, and 6. The parts A to C are theMA parts without
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Fig. 5. Top left part of the maximal essential loop of pre-SS of the fish. See text for

explanation of the annotation.

endpoints. One can see that parts 1,6, and A form a junction in an A3
1 form -

one can draw a box structure at these points, just like in Figure 2b.
In Figure 6b the fish with the MA and the essential SS branch is shown.
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Fig. 6. a: Presence of the MA in the pre-SS of the fish. Numbers denote branches

with endpoints, capitals interior parts. b: Fish, its MA (dotted) with annotation of

Figure 6 and the SS branch related to the maximal essential loop.

Here it also clear that these three parts are connected. Furthermore, informa-
tion about branch 6 is contained in the swallowtail part. arising at the junction,
which was labelled before as the segment I, viz. A−1−2−A. When the second
type of A2

2-nib transition occurs, this part swaps (it is mirrored in the line given
by part A) and the essential loop ends in point 6 instead of point 1. An A4

occurs if the order of the two MA branches 3 and 5 swap their connectivity. In
the pre-SS of Figure 5 this is visual as the coincide of the lines C, D, and F. At
the transition four locations are involved and the vertical line C is relocated to
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the right, close to point 7. The very small MA part between the lines C and E
is then transported to the be somewhere between the points 6 and 7, signalling
that first the horizontal jump (corresponding to branch 5 on the left side of the
fish, seen from the tail) is taken, and then the vertical jump (corresponding to
branch 3 on the right side).

6 Summary and Conclusions

In this paper we investigated essential loops in the pre-Symmetry Set. There
are either zero or two of them. If there are two, one relates to two minima of
curvature on the shape, the other to two maxima. Selecting the latter one yields a
linear structure containing by definition all shape information. It represents part
of the MA directly, that can be regarded as the main MA. Other MA-related
information is contained in the remainder of the string. Changes of the string
depend on known transitions of the (pre-)SS and are presented. The procedure
is exploited on an example shape, and possible changes are shown. As a result,
one ends up with a structure the can be considered as a Simplified Symmetry
Set, being in between the Medial Axis and the Symmetry Set.
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Abstract. We show that the pre-symmetry set of a smooth surface in
3-space has the structure of the graph of a function from R2 to R2 in
many cases of interest, generalising known results for the pre-symmetry
set of a curve in the plane. We explain how this function is obtained, and
illustrate with examples both on and off the diagonal. There are other
cases where the pre-symmetry set is singular; we mention some of these
cases but leave their investigation to another occasion.

1 Introduction

In this paper, we consider in some detail the structure of pre-symmetry sets in
2D and 3D. Recall that, given M , a smooth closed curve in 2D or surface in 3D,
the pre-symmetry set P of M is the closure of the set of pairs of distinct points
(p,q) ∈ M ×M for which there exists a circle or sphere tangent to M at p and
at q. From the pre-symmetry set it is not difficult to pass to the symmetry set
which is the locus of centres of these circles or spheres, together with the centres
of the limiting circles. When M is a plane curve, parametrized by the points of
a circle S1, we can consider P as a subset of the torus S1 × S1, represented in
the plane by a square with opposite sides identified. Note that in any dimension
P is symmetric: (p,q) ∈ P if and only if (q,p) ∈ P ; it follows that in 2D we
can also regard P as contained in S1 × S1 with symmetric pairs identified. This
is called the symmetric product of two circles and is a Möbius band in which
the boundary of the band represents the ‘diagonal’ points p = q. In the 3D
case, with M say topologically equivalent to a 2-sphere, we could consider P as
a subset of S2 × S2, which is topologically a complex quadric surface, or of the
symmetric product which is topologically a complex projective plane1.

However we shall not be concerned here with global models of the pre-
symmetry set, but rather with local or multi-local models. Starting from a circle

1 This is a classic result and is proved by regarding S2 as the Riemann sphere, that
is complex numbers together with ∞, and then associating with an unordered pair
(z1, z2) of elements of S2 the unique quadratic polynomial az2 + bz + c with roots z1

and z2. The corresponding element of the complex projective plane is then (a : b : c)
and the diagonal corresponds to the conic b2 = 4ac. In fact the symmetric product
of any closed 2-dimensional manifold with itself is known to be a 2-manifold, a
surprising fact since one might imagine that the diagonal would cause singularities.

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 36–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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or sphere S0 having k ≥ 2 contact points with our curve or surface M , the pre-
symmetry set can be partitioned into strata:
• one stratum for each pair of distinct contact points, pi,pj say, chosen from
the k points. Here, we consider circles or spheres tangent to M at points at or
close to pi and pj (if k > 2 then these circles or spheres ‘lose contact’ with M
close to the other k − 2 contact points of S0 and M).
• one stratum for each contact point pi between S0 and M which is of type A3

or higher—a vertex and its circle of curvature in 2D, or a ridge point and the
corresponding sphere of curvature in 3D. This stratum of P arises from circles
or spheres which are tangent to M at two points both of which are close to pi.

Note that we are concerned here with the symmetry set and not the medial
axis: the circles or spheres do not have to remain inside M (or more generally
be maximal with respect to M). We can consider the above strata separately in
our investigations. For example, starting with a sphere S0 having contact A1 at
two points p1,p2 and A3 at p3 with a surface M , we will have four strata which
correspond to contacts close to p1,p3; p2,p3; p1,p2; and p3,p3.

In what follows we shall concentrate on the strata:
• arising from two contact points: off-diagonal strata, or
• arising from one contact point: on-diagonal strata
since the other cases can be reduced as above to these two. We shall argue
that the ‘correct’ way to think of these strata of the pre-symmetry set P in
2D (n = 2) or 3D (n = 3), when they are non-singular, is as the graph of a
mapping from Rn to Rn. In this way we can capture the structure in a uniform
way, both for a single curve or surface and for a 1-parameter family of such. The
mapping in question will arise in a slightly different way for the on-diagonal and
off-diagonal cases, but the principle is the same for both. Several of the standard
examples of mappings from the plane to the plane [6,9]—fold, cusp, lips, beaks,
swallowtail—arise naturally in this context. See Figure 3.

The 2D case is relatively well-known [7]; in §2 we summarize some results
and interpret one of the cases as the graph of a mapping R → R in order to set
the scene for the 3D case. We also take the opportunity to prove a result which
explains why only certain singularities of the pre-symmetry set can occur on the
diagonal.

In §3 we turn to 3D. The underlying calculations here are rather complicated
and we suppress them in favour of giving details of the results. This is part of
a larger investigation of all the symmetry sets and pre-symmetry sets in 3D, for
surfaces and generic 1-parameter families. Figure 3 summarises the results from
§3, Figure 2 treats the example of fold maps.

2 The Pre-symmetry Set in 2D

Given a smooth plane curve M with parametrization γ : S1 → R2 the pre-
symmetry set is contained in the set of pairs defined by the equations

g(s, t) = 0, where g(s, t) = (γ(s)− γ(t)) · (T(s) ±T(t)), (1)
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where T stands for the unit tangent vector. The zero set of g also contains
diagonal pairs (s, s), and pairs where the tangents are parallel, and these need
to be excluded when finding the true pre-symmetry set.

2.1 The Pre-symmetry Set at a Diagonal Point

Let us examine the equation (1) close to a diagonal point, that is, when the
curve M has a vertex. We take M in local form having a vertex at the origin:

γ(x) = (x, y) where y = f(x) = a2x
2 + a4x

4 + a5x
5 + . . . , a2 �= 0,

with no x3 term. Expanding (1) with the + sign we find that there are no
solutions close to the origin besides s = t, and for the − sign the leading terms
(of degree 5) factorise as

2a2(a3
2 − a4)(s + t)(s− t)4.

For an ordinary vertex (contact with the tangent circle of type A3 exactly),
a3
2 �= a4 and the local structure of the pre-symmetry set, apart from the diagonal,

is a smooth transverse curve s + t + h.o.t. = 0.
For A4 contact we need to go to the next terms which are

−a2a5(3s2 + 4st + 3t2)(s− t)4,

where a5 �= 0. The quadratic form here is positive definite, so apart from the
diagonal term there is an isolated point at s = t = 0. Note that there cannot
be a pair of real branches of the pre-symmetry set at such a diagonal point. We
can also see this by noting that at an A4 point the curvature κ does not have
an extremum (since κ′ = κ′′ = 0, κ′′′ �= 0) and on an arc without an extremum
of curvature there can be no bitangent circles [10].

The same analysis can be continued to A5, where the leading term is

2a2(2a5
2 − a6)(s + t)(2s2 + st + 2t2)(s− t)4,

having a single transverse branch s + t + h.o.t. = 0. The factor 2a5
2 − a6 is zero

only for an A6 singularity. We find:

for k odd, a circle having Ak contact with the curve M results in a single branch
of the pre-symmetry set transverse to the diagonal; and for k even it results in
an isolated point of the pre-symmetry set on the diagonal.

2.2 Transitions Visible on the Pre-symmetry Set

The transitions which occur on symmetry sets were classified in [1]; some of
these are ‘visible’ on the pre-symmetry set. There has been considerable work on
this [7]. We only give examples here, together with an alternative interpretation
of one of the cases, in line with our work on 3D pre-symmetry sets below.
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• A4: the pre-symmetry set has an isolated point on the diagonal, growing to a
closed loop transverse to the diagonal in two places; compare §2.1.
• A2

2: two cases (1) moth, with the pre-symmetry set an isolated point growing
into a closed loop, and (2) nib, with the pre-symmetry set a transverse crossing
of two branches separating two ways. Note that off the diagonal, there is the
possibility of both isolated point and transverse crossing on the pre-symmetry
set, in contrast with the situation on the diagonal described in §2.1.
• A1A3: The pre-symmetry set has two strata, one on-diagonal and one off-
diagonal. The off-diagonal stratum has an inflexion parallel to one parameter
axis and the line through the inflexion parallel to the other parameter axis
passes through the diagonal point. See Figure 1.
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Fig. 1. Left three figures: an A1A3 transition seen in the pre-symmetry set; half of
S1 × S1 is shown, the 45◦ line being the diagonal s = t. The transitional moment is in
the centre, with an inflexional tangent parallel to the s parameter axis on one stratum
of the pre-symmetry set. There is also a diagonal point on the other stratum for the
same value of s. Right: the setup for analysing the A1A3 pre-symmetry set. The general
bitangent circle under consideration has contact points p(s) close to p0 and q(t) close
to q0. Since A3 occurs at the ‘first’ point p0 and A1 at the ‘second’ point q0 we could
also write this as A3A1.

We consider in more detail the case of A1A3, as a preparation for the 3D
case. Let M,N be smooth arcs with arclength parameters s, t, general points
p = p(s),q = q(s) and curvatures κ(s), λ(s) respectively. Suppose that a circle
C0 is tangent to M with contact A3 at the point p0 = p(0), and tangent to N
with contact A1 at the point q0 = q(0). Write e, m for the unit tangent and
normal at p and f, n for the unit tangent and normal at the point q. Finally
write r for the radius of a bitangent circle with contact points p and q. See
Figure 1. Since the circle C0 has A3 contact with M at s = 0, this point is a
vertex of M and we have rκ = 1 and dκ/ds = 0 at s = 0.

We take as the defining equation of the pre-symmetry set F (s, t) = 0 where

F (s, t) = p + rm − q− rn. (2)

The Jacobian matrix of the mapping F : R3 → R2 is the 3 × 2 matrix with
columns the vectors e(1 − rκ), −f(1 − rλ), m − n. Now, using suffix 0 to
mean evaluation at s = 0 or t = 0, κ0 = 1/r, λ0 �= 1/r so at s = t = 0 the first of
the column vectors is zero and the others are nonzero multiples of f0, m0 − n0.
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The first is tangent to the circle C0 and the second is parallel to p0 − q0 which
is a chord of the circle; hence the two vectors are independent and we deduce
from the implicit function theorem that (2) has solution with t and r smooth
functions of s near s = 0.

Now consider t and s as these functions of s and write t′ for dt/ds, etc.
Regarding (2) as an identity in s we can differentiate with respect to s and get

e(1− rκ) + r′m− f(1− rλ)t′ − r′n = 0.

At s = 0 the first term is zero and again m−n, f are independent so we deduce
r′0 = t′0 = 0. Differentiating again with respect to s, putting s = 0 and keeping
only the terms which are nonzero at s = 0 gives r′′(m − n) = f(1 − rλ)t′′, so
that r′′0 = t′′0 = 0. Thus both r and t, as functions of s, have degenerate critical
points. In fact differentiating again shows that for exactly A3 at s = 0 and A1

at t = 0 we have the next derivatives of r and t nonzero. The fact that t has
t′0 = t′′0 = 0 is illustrated in Figure 1 where the stratum of the pre-symmetry
which is off-diagonal, namely the graph of t, has an inflexion. Furthermore with
a little more trouble we can show that in a generic family of curves this A2

singularity of the function t is versally unfolded, that is it behaves as shown in
Figure 1 with two critical points vanishing in the inflexion.

We conclude:

Proposition 1. At an A1A3 singularity the off-diagonal stratum of the pre-
symmetry set has the structure of the graph of a function with a critical point of
type A2, that is a critical point equivalent to t = s3, an ordinary inflexion. In
a generic family of curves the pre-symmetry set has two ordinary critical points
‘before’ the A1A3 transition and none ‘after’.

In the 3D situation we shall also identify the pre-symmetry set as the graph of
a function of a well-defined type. See illustrations in Figure 2 and Figure 3.

3 The Pre-symmetry Set in 3D

In this section we shall investigate the strata of the pre-symmetry set of a smooth
closed surface as in §1. We shall split into the off-diagonal and the on-diagonal
cases; the results are strikingly similar but the details are different. In fact we
shall suppress most of the underlying mathematical calculations, which are sim-
ilar to those in §2 but more complicated since we are dealing here with surfaces
instead of curves.

There are a great many cases of transitions on the symmetry set in 3D.
Bogaevsky [2] has determined the transitions on the 3D medial axis (see also
[4]) and in unpublished work has given a list of all possible transitions on the
3D symmetry set, some of which have been investigated by Pollitt [8]. In this
paper we shall determine the pre-symmetry set for a small number of represen-
tative cases; more mathematical detail and a larger number of cases will appear
elsewhere.
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Fig. 2. Schematic diagrams of two of the mappings which we consider, both equivalent
to folds. Above, Case A4: g maps a parameter plane T to a neighbourhood P of the
A4 point. For a point (s, t) ‘above’ the fold line g(Σ) on P , there are two bitangent
spheres, with contact at (s, u1), (u1, v(s, u1) and at (s, u2), (u2, v(s, u2)). Below, Case
A2A1: for a point (u, v) ‘above’ the fold line h(Σ) on P = neighbourhood of the A1

point, there are bitangent spheres with contact at (s1, t1), (u, v) and at (s2, t2), (u, v).

For the symmetry set of a generic surface M in R3 we consider here the
following singularities:

A3, A4, A1A2, A1A3,

and for symmetry sets occurring in generic 1-parameter families of surfaces we
consider

A1A3 transitions, A1A4, A5.

These results can also be used to determine other cases with three contact
points, such as A2

1A2 and A2
1A3. The cases A2

2, A2A3 can be treated similarly.

3.1 The Off-Diagonal Case

The basic setup is two pieces of smooth surface and a given sphere tangent
to both of them at known points. We then seek nearby points such that there
is a sphere tangent at these nearby points. To put the matter more precisely,
consider two pieces of surface M and N and chosen points p0,q0 such that there
is a sphere S0 tangent to M at p0 and to N at q0. The order of tangency at either
point might be Ak for k an integer such that the total tangency is consistent
with either a single generic surface or a surface in a generic 1-parameter family
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(1) (2) (3) (3′)

(4) (4′) (4′′) (5) (5′)

Fig. 3. Standard projections of a curved surface, say T in R3 to the plane P of the
paper. (1) fold; (2) cusp; (3) lips with unfolding (3′); (4′) beaks with unfolding (4) and
(4′′); and (5) swallowtail with unfolding (5′). These have the following interpretations
in the context of this paper. (1) Fold (compare Figure 2): (i) Prop. 3(b), T represents a
neighbourhood of an A2 point on M and P represents a neighbourhood of an A1 point
on N for an A2A1 singularity. Points of P ‘below’ the fold line have no corresponding
bitangent spheres on T while points of P ‘above’ the fold line have two. (ii) Prop. 4(b),
A4. Now, T represents the parameter plane of s and u while P represents the surface
M . Thus points of M ‘below’ the fold line are not contact points for a bitangent sphere
while points ‘above’ are contact points for two such spheres. (2) Cusp: Prop. 3(c),
generic A3A1 (fin point) only. The two fold lines ending in the cusp give points of M
(represented by the curved surface T of the figure) which are contact point of A2A1

spheres, as in (1). (3) Lips: (i) Prop. 3(d): one of the A3A1 transitional cases; (ii)
Prop. 4(c), A5. (3′) shows the situation immediately ‘after’ the transition, with two
cusps, representing generic A3A1 points as in (2). (4) Beaks: the other A3A1 transition,
Prop. 3(d), only. This time two A2A1 curves ‘survive’ the transition though the A3A1

points (cusps as in (2)) are annihilated. (5) Swallowtail: A4A1 transition, Prop. 3(e),
only.

of surfaces. For example A3 at p0 and A1 at q0 would be a typical case. (The
case of D4 contact at an umbilic p0 and A1 contact elsewhere is also generic in
a 1-parameter family, and can be treated similarly.)

We take local parameters (s, t) on M near p0 and (u, v) on N near q0, where
s = t = 0 at p0 and u = v = 0 at q0, general points on M and N being denoted
p and q. Then the parameter space of points close to the pair (p0,q0) is R4, with
coordinates (s, t, u, v). We seek the set of such points in R4 such that there is a
sphere tangent to M at the point with parameters (s, t) and tangent to N at the
point with parameters (u, v). This set is the local pre-symmetry set for the pair



Pre-symmetry Sets of 3D Shapes 43

of surfaces M,N . As in §2.2 we shall in many cases identify the pre-symmetry
set with the graph of a mapping of known type.

Let r denote the radius function: the radius of the given sphere S0 is r0.
Further, let m be the unit normal at p, oriented so that for p0 the normal
passes through the centre of the given sphere, and let n be the unit normal at
q, oriented similarly. Then the condition for a pre-symmetry set point is

G(s, t, u, v, r) = 0 where G(s, t, u, v, r) = p + rm − q− rn. (3)

In this equation, which is three scalar equations, there are five ‘unknowns’
s, t, u, v, r so we expect a two-dimensional solution. Note in particular that, on
G = 0, the vectors p− q and m− n are parallel.

For the purpose of calculation we shall assume that neither p0 nor q0 is an
umbilic point of the corresponding surface. This enables us to use principal di-
rections for our coordinates around these points. Note that umbilics are isolated
so we are losing only a finite number of bitangent spheres. Thus we shall assume
the s = constant and t = constant curves on M are, near p0, principal curves,
and that for s = 0 and for t = 0 these curves are unit speed; and similarly for
N . Let e1, e2 be principal directions at p and f1, f2 principal directions at q. Fi-
nally we use κ1, κ2 for the principal curvatures of M and λ1, λ2 for the principal
curvatures of N .

The Jacobian matrix of G at (0, 0, 0, 0, r0) has the following vectors for its
columns, using the fact that differentiating the normal in a principal direction e
produces the corresponding principal curvature times e:

(1− rκ1)e1, (1− rκ2)e2, −(1− rλ1)f1, −(1− rλ2)f2, m− n (4)

Note that m− n is parallel to the chord joining p and q, by (3).
The implicit function theorem gives us:

Proposition 2. Suppose that the contact at q0 is of type A1, which is the same
as saying that r �= 1/λ1 and r �= 1/λ2. Then u, v, r are smooth functions of s
and t on the set G = 0 and in particular the pre-symmetry set
{(s, t, u, v) : G(s, t, u, v, r) = 0 for some r}
is the graph of a smooth function g : (s, t) → (u, v).

The following result gives the nature of the mapping g for several cases. The
role of g is that, for any point p near p0, g gives a point q near q0 such that
there is a bitangent sphere tangent to M at p and to N at q. Thus every point
near p0 is a possible first point of contact but only points of the image of g are
possible second points of contact. Furthermore, a given q may be the image of
several points p under g. We illustrate these properties in Figure 3 and Figure 2.

We explain the terms used in the Proposition after the statement.

Proposition 3. (a) In the A1A1 case, g is a local diffeomorphism;
(b) in the A2A1 case2, g is a fold mapping;
2 We write A2A1 rather than A1A2 simply because the ‘first’ point p0 is an A2 and

the ‘second’ point q0 is an A1.
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(c) in the generic A3A1 case (‘fin point’ on the medial axis), g is a cusp mapping;
(d) in the transitional A3A1 cases, g is a lips or beaks mapping;
(e) in the A4A1 case, g is a swallowtail mapping.

Part (c) here is to be compared with Proposition 1 where the inflexion on the
pre-symmetry set in the A1A3 case was interpreted as the graph of a mapping
R → R of type A2. Here we interpret the structure of the pre-symmetry set as
the graph of a cusp mapping R2 → R2. Note the distinction between a generic
A3A1, which occurs on a single smooth surface and a transitional A3A1 which is
one of the two forms identified by Bogaevsky [2] in his classification of transitions
on the 3D medial axis.

In the above Proposition, we use the standard names of classes of maps
R2 → R2. These maps have the following ‘normal forms’ [9] up to smooth changes
of coordinates in the two copies of R2:
(a) local diffeomorphism: (x, y) → (x, y)
(b) fold mapping: (x, y) → (x, y2)
(c) cusp mapping: (x, y) → (x, xy + y3)
(d) lips or beaks mapping: (x, y) → (x, x2y ± y3) (+ lips, − beaks)
(e) swallowtail mapping: (x, y) → (x, xy + y4).

The different cases are separated by examining the critical set Σ of g, that
is the set of points (s, t) for which (using suffices to denote partial derivatives)

det
(

us ut

vs vt

)
= usvt − utvs = 0. Standard recognition of singularities gives:

(a) Σ is empty
(b) Σ is a smooth curve and the restriction g|Σ of g to Σ is nonsingular
(c) Σ is a smooth curve and g|Σ has a cusp of the form t → (t2, t3)
(d) Σ is an isolated point for a lips and a pair of transverse curves for a beaks
(e) Σ is a smooth curve and g|Σ is of the form t → (t3, t4).

Ideally we would like a direct link between the contact of a sphere and the nature
of the mapping g, but as yet we do not know of such a link. Our result is proved
on a case by case basis by direct calculation. We give a brief indication of the
calculations in §3.2. We shall see in §3.3 that much the same result holds in the
on-diagonal case, though the mapping g is replaced by a different one.

3.2 Some Calculations

Starting from the equation G = 0 where G is given in (3), we can differentiate
with respect to s and t using standard results about the derivatives of tangent
vectors and normal vectors along curves on a surface; see for example [6, §6.1]
for the relevant formulas. Needless to say the details become complicated by the
time the second or third derivatives are reached, and we suppress these details
here, merely giving an indication of how the calculations begin.

Differentiating G = 0 with respect to s and t, which are arclengths on the
principal curve t = 0, s = 0 respectively, gives
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∂
∂s : e1(1− rκ1) + rs(m− n) = f1(1− rλ1)us + f2(1− rλ2)vs, (5)
∂
∂t : e1(1− rκ2) + rt(m− n) = f1(1− rλ1)ut + f2(1− rλ2)vt, (6)

valid along the curves t = 0, s = 0 respectively. At points away from these curve
we need to allow for the non-unit speed nature of the parameter curves; however
these speeds do not affect our calculations when we evaluate at s = t = 0.

Consider the A1A1 case. Then 1 − rκ1, 1 − rκ2, 1 − rλ1, 1 − rλ2 are all
nonzero at s = t = 0. Taking the vector product of the right-hand sides of (5) and
(6) then gives (1− rλ1)(1− rλ2)(usvt − vsut)n. The mapping g : (s, t) → (u, v)
is a local diffeomorphism at s = t = 0 if and only if this is nonzero. However,
if the left-hand sides of (5) and (6) are parallel vectors, then e1, e2 and m − n
are linearly dependent, and this is impossible since e1, e2 are tangent vectors
to the sphere S0, and m − n is parallel to the chord p− q of the same sphere.
Hence in the A1A1 case, g is a local diffeomorphism, verifying assertion (a) of
Proposition 3.

Keeping the contact at q0 as A1, so that 1 − rλ1, 1 − rλ2 are nonzero, but
moving to A2 contact at p0 we have 1 − rκ1 = 0; note that for A3 (ridge or
crest point) we will have also κ1s = 0: the derivative of κ1 in the first principal
direction equal to zero [5, p.144]. Using the linear independence of m−n, f1, f2
(5) now gives rs, us, vs all equal to 0 at s = t = 0, while ry, uy, vy can all be
evaluated at s = t = 0 from (6). For example, ry = −e2 ·n(1− rκ2)/(m ·n− 1),
where the denominator cannot be 0 since the points p0,q0 are distinct. We can
now check the assertion (b) of Proposition 3. Continuing in this way we find, for
A3A1, that rss, uss, tss are all zero at s = t = 0, and the condition for Σ to be
singular comes to ustvt−utvst = 0. A very similar argument to that in the A1A1

case enables us to express this condition as e2 · n(1 − rκ2)κ2
1 = κ1t(m · n − 1),

and after some manipulation this corresponds precisely to the transitional A3A1

condition found by Pollitt [8]: more picturesquely, it means that the osculating
plane of the line of curvature on M at p0 in the direction e1 passes through q0.
In this way we verify (c) and (d) of Proposition 3.

Unfortunately the criterion which distinguishes the two A3A1 transitional
cases, and which therefore distinguishes lips from beaks, though computable, is
complicated and we do not have a simple geometrical interpretation of it. There
is a strong link with the function R(s, t) = rκ1: in fact in the transitional A3A1

situation, Rs = Rt = 0 at s = t = 0, and the ‘lips’ case corresponds to R having
a maximum or minimum and the ‘beaks’ case to R having a saddle point.

3.3 The Local (On-Diagonal) Case
Here we consider the case of the pre-symmetry set of a single surface piece M
corresponding to points close to an A≥3 singularity, at p0 say, which may be
taken as the origin in R3. This case has the additional difficulty that the points
in question intersect the diagonal of the space R4, that is the set of points
(s, t, s, t). This means that, in the notation of (3), G−1(0) will never be smooth
and we have to ‘eliminate’ the diagonal component in some way. It turns out
that we can often do this by using a different parametrization from that in §3.1.
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We give brief details below. As before, we let (s, t) and (u, v) be the parameters
for points of contact of a bitangent sphere, where now all four numbers s, t, u, v
are close to 0. In practice we can take M in Monge form z = f(x, y) so that the
contact points are p = (s, t, f(s, t)) and q = (u, v, f(u, v)):

f(x, y) = 1
2 (κ1x

2 + κ2y
2) + b0x

3 + b1x
2y + b2xy

2 + b3y
3

+c0x
4 + . . . + c4y

4 + d0x
5 + . . . + d5y

5 + . . . . (7)

Instead of having r, u, v expressed as smooth functions of s, t it is much better
to use s, u as the parameters and express r, t, v in terms of these. The great
advantage of this is that the diagonal points appear as s = u, that is, the
intersection of the diagonal with the true pre-symmetry set appears as a curve
{(s, t(s, s), s, v(s, s)} on the pre-symmetry set (pre-SS).

The pre-SS is symmetrical about the diagonal in the sense that, for all
a, b, c, d, (a, b, c, d) ∈ pre-SS ⇐⇒ (c, d, a, b) ∈ pre-SS. This implies that,

for all (s, u) ∈ R2 we have t(s, u) = v(u, s). (8)

We find the following. Let h : (s, u) → (s, t(s, u)) be the mapping determined
by t as a function of s and u. The relation between this and the mapping (s, u) →
(u, v(s, u)) is completely symmetric so we need consider only h. The role of h is
to parametrize the points p close to the origin which are one point of contact
of a bitangent sphere. The other point of contact is parametrized by (u, v(s, u)).
A simple calculation of the power series expansions for t and v up to order 3 at
least, in u and s, allows to get: r = 1

κ1
− κ1tα

κ2
1

(s + u) + ... where κ1t = 2b1.

Proposition 4. (a) A3: h is a local diffeomorphism (see note below),
(b) A4: h is a fold mapping,
(c) A5: h is a lips mapping (beaks mappings do not occur).

In all cases the pre-symmetry set is the graph of a smooth function h and is
therefore itself smooth. Fig. 3 illustrates these cases (see also Fig. 2).

Note on A3. There is an exception, which occurs when the tangent to the
ridge (crest line) through the origin is in the ‘other’ principal direction. That
is, if the ridge corresponds to the principal direction e1 then the tangent is in
the direction e2. This is slightly mysterious, but in this case we can use a less
satisfactory parametrization, by s and t, instead.

There follow some brief details of the above cases.
A3: We find

t(s, u) = α(s + u) + h.o.t., v(s, u) = α(s + u) + h.o.t., (9)

and α = 1
4 (κ3

1κ2 − κ4
1 − 8c0κ2 + 8c0κ1 + 4b21)/(c1κ2 − c1κ1 − 2b1b2). The numer-

ator of α is zero precisely when the contact is A4; see below for this case. The
denominator being zero is the exceptional case noted above.
A4: We find

t(s, u) = t20s
2 + t11su + t02u

2 + . . . ; v(s, u) = t02s
2 + t11su + t20u

2 + . . . , (10)
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and the constant coefficients tij are determined by the local geometry of the

surface, namely t02 = 3(d0κ2
1−2d0κ1κ2+b1c1κ1−b1c1κ2+b21b2+d0κ2

2)
(κ1−κ2)(c1κ2−c1κ1−2b1b2)

t20 = t02 + b1/(κ1 − κ2), t11 = 4
3 t02.

The coefficients in v as compared with t are explained by (8). (As with
A3 there is an exceptional case, if the denominator of t02 is zero. Here, this
means that the ridge is singular: this is a transitional A4 case, where the ridge
is undergoing a transition. See [5, p.174].) The coefficient t02 of u2 is zero if and
only if the singularity is A5 or higher; thus for A4 it is nonzero. From this it
is easy to check that the mapping h : (s, u) → (s, t) is a fold. The critical set
Σ of h is given by t11s + 2t02u + . . . = 0 and has tangent line 2s + 3u = 0.
The fold mapping ensures that, given a point (s1, u1) close to the origin, and
not on Σ, there is a second distinct point (s2, u2) with the same image under
γ. This means that s1 = s2 = s say, and t(s, u1) = t(s, u2) = t, say. Then
(s, t, u1, v(s, u1)) and (s, t, u2, v(s, u2)) both belong to the pre-symmetry set,
and the points (u1, v(s, u1)), (u2, v(s, u2)) are the distinct points of contact of
two spheres, both tangent to M at (s, t). Compare Figure 2.
A5: We find

t =
b1

κ1 − κ2
s2 + t30s

3 + t21s
2u + t21su

2 + 2
3 t21u

3 + h.o.t. (11)

The critical set of the mapping (s, u) 	→ (s, t) is now t21s
2 + 2t21su + 2t21u2+

h.o.t. = 0. The discriminant of this quadratic form is −4t221 < 0 so that the
critical set of the mapping has an isolated point at the origin. This means that
it can be only ‘lips’ and not ‘beaks’.

4 Conclusion

We have studied pre-symmetry sets of surfaces in 3D, analysing many of them as
graphs of functions. This approach brings out the geometry of the pre-symmetry
sets and allows one to see them evolving through a generic transition. There are
many other interesting cases to study, particularly those where the pre-symmetry
set is in fact a singular surface.
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Abstract. We face the question of how to produce a scale space of image 
intensities relative to a scale space of objects or other characteristic image 
regions filling up the image space, when both images and objects are 
understood to come from a population. We argue for a schema combining a 
multi-scale image representation with a multi-scale representation of objects or 
regions. The objects or regions at one scale level are produced using soft-edged 
apertures, which are subdivided into sub-regions. The intensities in the regions 
are represented using histograms. Relevant probabilities of region shape and 
inter-relations between region geometry and of histograms are described, and 
the means is given of inter-relating the intensity probabilities and geometric 
probabilities by producing the probabilities of intensities conditioned on 
geometry. 

1   Introduction 

This workshop focuses largely on finding the essential structure in the 2D images that 
are input to the human visual system. It marvels that the mature visual system can in 
100-200ms make out a complex object, a multi-object complex, or a textured region 
such as a forest and identify it, and it wonders how such direct image access is 
possible. 

But the immature human visual system has a far more limited capability, and some 
part of that limitation is that it has not built up the models of the world corresponding 
to the objects and regions of texture that can be recognized. The models are somehow 
a very important part of the deep structure. This position applies as well when we are 
exploring the methods of computer vision, or more generally, of image analysis. This 
paper therefore explores a model-relative point of view for which the deep structure is 
found in an image when such models are present. 

First, where do the models come from? They must come from multiple instances of 
the geometric layouts, i.e., using statistics to form probabilistic descriptions. 
Similarly, the images must come from multiple instances. We therefore expect that 
the structure we build will involve probability densities on geometry and probability 
densities on images. The model-relative point of view suggests that we will need 
probabilities on images I conditioned on geometry z. 
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For reasons that need not be repeated to attendees of this workshop, the image data 
need to be understood at multiple scales. However, we argue that this data need to be 
understood in reference to geometric models that themselves are understood at 
multiple scales. It is this interaction between image intensity data and geometric 
models that is the essence of this paper. We do not claim to have solved the problem 
completely, but we hope to communicate some useful points and to develop some 
important relations. We have developed these largely in the context of our main 
application of the analysis of 3D medical images such as CT and MR images, but we 
suggest that many of the ideas apply in the context of 2D light images of the visible 
world (e.g., see the work on active appearance models by Cootes et al. [1998]). 

Sections 2-4 describe the basic ideas of the geometric descriptions and relations, 
intensity descriptions, and the probabilistic relations between geometry and intensity 
that we propose. Section 5 presents the ideas of geometry and its probability with 
mathematical detail, and section 6 presents the ideas of image intensities conditioned 
on geometry and its probability. Section 7 describes evidence for the usefulness of the 
proposed representation, and section 8 closes this paper with a discussion of issues yet 
to be faced and work yet to be done. 

2   Objects, Object-Based Coordinates, and Neighbors 

In images, objects or named real world regions are typically characterized by a 
uniform color or color mixture or texture that may vary in a predictable way across 
the object, or they are made up of a small collection of such regions. Thus the regions 
are formed, to first approximation, by successive subdivision. A major point is that 
one needs a coordinate system relative to the object or region to describe this 
intensity information in the context of a collection of objects or real world regions 
that vary in shape across the population of such objects. To save space, henceforth we 
will call this an “object-based coordinate system”. With such a coordinate system u, 
intensity properties I can be transformed from the Euclidean coordinates x in which 
they arrive to the camera to the object-based coordinates, producing an intensity 
distribution I(u) that can be the subject of statistical analysis. Similarly, objects, 
named regions, and their inter-relations have a statistical geometry that is coupled 
with the image intensities or textures that yield the object percept. 

Inter-relations among neighbors are central to geometry and thus images of 
geometric entities. But these relations occur at many scales: objects and named 
regions have neighbors that are other objects and named regions; object sections have 
neighbors that are other object sections; voxels or pixels have neighbors that are other 
voxels or pixels. This setup is illustrated in Fig. 1. 

If describing the inter-relations among the smaller scale entities is not to produce a 
combinatorically unwieldy representation, these neighborhood relations need to be 
pretty local relative to their scale. Thus, we need multiscale geometry and multiscale 
image intensity representations, and we need a geometry that understands abutments 
and region inter-relations at a scale. 
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Fig. 1. An abdominal image region made up of sub-regions, showing only one level of 
subdivision. A region of interest, shown in the lightest shade, can be the whole image domain 
or a subset of that domain that itself forms a region at some scale. The neighbors of the region 
of interest are shown in the darkest shade. 

For the purposes of this paper we will assume a fixed subdivision topology and a 
fixed neighborhood relation topology. Variation in this topology is a worthwhile topic 
but not within the realm of this paper. Maintaining this topology allows slidings of 
one region along another at the regional scale and these are needed, not just 
diffeomorphic transformations. Abutting objects or nearby objects can not only 
change relative shape, but also they can change relative position and orientation, in a 
way quite possibly correlated with the shape of their neighboring objects and regions. 
A way of probabilistically measuring a combination of object shape and inter-object 
geometric relation is discussed in the paper by Pizer, Jeong, Lu, et al. in this volume 
[2005]. 

3   Intensity Histograms Via Object-Based Apertures 

Regional intensity representations have, we believe, traditionally been far too local, 
indicating pixel by pixel what the probability distribution of intensity should be. Of 
course, summarizing intensity over not-too-local regions is the aim of using apertures 
in the aperture scale space methods of ter Haar Romeny [2003], Florack [2000], 
Lindeberg [1994], and many others.  However, we argue first, that the scale selection 
should be with respect to the geometry-based coordinate system u rather than the 
Euclidean coordinate system x, and second, that the information within the aperture 
can usefully be more richly summarized as a histogram rather than as a single 
intensity for the aperture-weighted region.   The first point is buttressed by results of 
Sean Ho’s dissertation [2004] that probability distributions on intensities in an along- 
object-boundary scale space are more generalizable and specific than the more 
commonly used ones that are local in along-boundary location. The second point, 
regarding the benefits of the uses of probabilities on regional histograms, is discussed 
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in the companion paper by Broadhurst et al. [2005]. That paper gives some early 
results on the method for computing statistics of intensity histograms and the 
advantages not only of that choice but of doing this across multiple regions chosen in 
object-relative coordinates.  Of course, histogram probabilities are only useful if the 
image intensities are somehow normalized to remove intensity non-calibration effects, 
but this is true for any analysis of intensities across different images. 

The regional, histogram-based approach, of course, begs the question of region 
size, and this is a matter of scale, i.e., aperture. Because the regions have tolerance at 
any scale, the aperture corresponding to a region needs to be soft with a falloff 
distance that increases with region size, but on the other hand, the aperture needs to be 
determined by the statistics of the intensity distribution in the region, and this may 
have a rather harder or rather softer edge. We discuss this further in section 4. 

4   Geometric and Histogram Statistics 

The geometric relations that we have been discussing, of the formation of object-
based coordinates, are most economically understood in terms of local orientation at 
least as much as position. Indeed, the early human vision system has orientation, 
position, and scale as its three major coordinates. Together, these spaces, or the 
abstract spaces of the corresponding geometric transformations of rotation, 
translation, and magnification, are curved. Therefore, if we are to do probabilistic 
analysis in these terms, our Euclidean feature spaces will not do. Linear spaces may 
provide the best engineering mechanisms for statistics, and nonlinear transformations 
such as the rotations involved in local twisting and bending may have their 
mathematical underpinnings in tangent planes (linear spaces) on curved manifolds. 
Nevertheless, probabilities defined on the non-Euclidean feature spaces must be the 
essential basis for our geometric statistics, and these have been provided by the 
methods of Fletcher [2004] and Pennec [1999] that have been built on statistical 
approaches pioneered by Kendall [1989] and Grenander [1976, 1978]. Based on these 
ideas, we use probability distributions based on Fréchet means on curved manifolds 
and principal geodesics defined via manifold tangent planes at the mean. 

Since we need a discrete scale space via successive subdivision, we need a means 
of producing probabilities at any scale. For this we use the method of residues 
described in [Lu 2005]. The idea is to describe the probability distribution for the 
global region first and define the residue at the global scale level for each training 
sample to be the representation of the training sample itself. Then successively, large 
scale to small (increasing j in Fig. 2), we remove from the residue of each training 
sample at a scale level j the projection onto the manifold forming the domain of the 
probability at scale level j-1. This leaves residues at each scale level that describe only 
information at that scale level, i.e., an analogy to the Laplacian pyramid. Probabilities 
can then be done scale level by scale level on the corresponding residues. 

Histogram statistics need to be provided in a feature space in which straight lines 
(geodesics) between histograms produce valid interpolations. In the companion paper 
by Broadhurst et al. [2005], a histogram representation in terms of average quantile 
values of the histogram is described that has the desired property: moving along 
geodesics according to an Earth Mover’s distance. Thus, principal component 
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analysis in this space is a useful way of forming probability distributions on 
histograms. 

5   Mathematics and Probability of Multiscale Geometry 

Let us put this in mathematical and probabilistic terms. Fig. 2 will schematize our 
results. 

Fig. 2. The schema of Images in Populations via Geometric Models in Populations 

Let z stand for one’s geometric representation of a region of space densely filled 
with subregions. These subregions form objects and regions in the interstitium 
between objects, but we will use the word “region” to refer to either. We use m-reps 
for object representations at large and moderate scales because they enable parts, 
provide economical descriptions of all of the local geometric transformations needed, 
are able to provide the object-based coordinate system of objects’ interiors, and allow 
inter-object and inter-part relations also to be represented economically. We use 
diffeomorphic displacements at small scales. But the discussions below are intended 
to apply to whichever representation you might use, as long as that representation 
provides region-based coordinates. 
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Statistical analyses of intensities requires that intensities be compared at 
corresponding positions across training cases. Similarly, subdivision of regions must 
be done with appropriate spatial correspondence. These correspondences are implied 
by the geometry, i.e., by the layout and shape of the regions, perhaps via statistics of 
the training cases. We characterize this correspondence via the object-based 
coordinate system named u.  

Let I describe a discrete image, i.e., a tuple made up of a scalar value for each pixel 
or voxel. The object-based coordinates of a region allow us to designate those pixels 
or voxels within the region and thus allow the formation of histograms of objects or 
other connected image regions. These objects or regions have a neighborhood relation 
with abutting regions. If histograms are to be the region descriptors, probably the 
smallest size regions should still have many pixels or voxels. 

If the space described by z is to be divided into subregions, each subregion can be 
described as an aperture, i.e., a weighting function in u. We see the ideal aperture as 
representing the certainty a pixel or voxel is in the region. Thus the aperture would 
have the value of 1 well interior to the region “boundary”, have the value of 0 well 
exterior to the region “boundary”, and fall smoothly from 1 to 0. These spatial 
subdivisions forming the regions need to get successively smaller as the level of detail 
increases. The need for discrete subdivision suggests that the levels of detail be 
discrete and that the process is subdivision, i.e., decreasing aperture size or scale. 
Thus we index level by j, and we take the inverse point of view of many at this 
workshop and let j increase as the level of detail, i.e., the spatial scale decreases. Let 
zj

k indicate the aperture describing the kth region at the jth scale level. And let uj
k 

describe the object-based coordinate system implied by zj
k. 

We need to describe the intensities within the aperture (region) zj
k. These can be 

described by histograms of I(uj
k), with aperture weighted counts. We use the symbol 

Hj
k for the histogram for the kth region at scale level j. Notice that, rather than being 

described directly in x, zj
k needs to be described by apertures in uj-1

m, where m 
designates the parent region of region k,j. Each object-based coordinate must then be 
transferred to Euclidean coordinates x. 

Because regions not only have soft apertures but also have level surfaces of 
aperture weight that are smoother, the larger the scale (lower the scale index j), we 
can expect object regions to contains a small contribution from pixels or voxels in 
neighboring regions. Indeed, it is possible that we may wish to train histograms 
excluding these neighbor-region voxels and even possible that we might train 
boundary region histograms that explicitly have a nearly half-and-half mixture of the 
two neighboring histograms. 

Just as regions have soft apertures in space, histograms need soft apertures in 
intensity. These apertures should increase as the spatial scale increases. In effect, this 
means that the bin sizes of the histograms should increase with spatial scale and that 
the bins should overlap, having soft edges. This might be done directly, but it is 
probably preferable to do it on the Earth Mover’s features of histograms produced by 
Gaussian-weighted average quantile values of histograms [Broadhurst 2005].  

The regional geometric representations need to be described over a population of 
cases, and the regional intensity distributions need to be described over that 
population of cases, so we need probability densities on multiscale geometric 
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histograms. The means of doing statistics on histograms is described in detail in the 
companion paper by Broadhurst et al. [2005]. 

As for statistics on geometry, besides understanding that statistics on geodesic 
manifolds will be necessary if twisting and bending is to be described and that these 
statistics will be on residues at the respective scales, it is important to understand that 
a region’s geometry does not simply involve its own shape but also that of its 
neighbors. One of the major functions of having various scales is to allow neighbors 
to be local at that scale. Indeed, our picture is that a neighbor of a region includes all 
and only abutting regions at the same scale as the region. Thus denote by N(j,k) the 
set of regions that are neighbors of region j,k: {j,m | region j,m abuts region j,k}. Of 
course, this definition can be loosened to include second-order abutments or even 
higher order abutments. Since objects can slide along each other in these populations, 
we have another orientational relation that must be described using geodesic 
manifolds.  

The importance of relationships with neighbors means that a Markov Random 
Field is the appropriate model of geometry. That is, we need to focus on p(zj

k | zN(j,k)), 
where we use the notation zN(j,k) as a shorthand for {zj

m | (j,m) ∈ N(j,k)}. This density 
involves two factors, the shape of the region and its inter-relation with its neighbors:  
p(zj

k | zN(j,k)) = p(shape of zj
k, inter-relationship of zj

k and zN(j,k)). 
This suggests handling object shape and inter-object relations together: one way to 

do this is via the region augmentation and prediction method described in the 
companion paper by  Pizer, Lu, Jeong, et al. That paper shows how to train the shape 
plus neighbor probabilities. Also, [Han 2005] shows how to use this same approach 
for the relation between protrusion and indentation subfigures and their host figures. 
Rather than using these conditional probabilities to compute p(zj), this latter 
probability density is never evaluated, but rather one can find the mode of p(zj)  by the 
Iterative Conditional Modes algorithm using the conditional probabilities p(zj

k | 
zN(j,k)). 

As shown by the down-pointing arrow in the “Geometry” column in Fig. 2, we 
create the geometric statistics from large scale to small. In contrast, histograms are 
created from the original image, i.e., from the smallest scale, so the vertical arrow in 
the “Image Intensity” column is shown pointing upward. As described earlier, we use 
residues to create geometric probabilities for scale j based on removing the larger 
scale changes at scale j-1 from the training cases. We have thereby implicitly assumed 
the conditional independence of the probabilities of the geometry of a parent region 
with each of its subregions. But we have found empirically that this property does not 
hold. Thus we either must include parent regions and children regions as neighbors, or 
we must adjust the principal geodesic analysis forming the probabilities to iteratively 
adjust the respective probabilities to obtain the desired property. 

6   Mathematics and Probability of Coupled Image Histograms and 
     Multiscale Geometry 

We now move on to combining the intensity histogram statistics and the geometric 
statistics. As shown in Fig. 2, we believe it is appropriate to combine these scale level 
by scale level. Let us take segmentation, i.e., region designation in a particular target 



56 S.M. Pizer et al. 

case, as our driving problem. From the Bayesian point of view we wish to compute 
the posterior optimum, i.e. arg maxz p(z | I). Doing this scale by scale means 
optimizing p(zj | I). Moreover, we do not optimize p(zj | I) directly but rather apply the 
Iterative Conditional Modes algorithm to   p(zj

k | zN(j,k) , I). But p(zj
k | zN(j,k) ,  I) = p(I | 

zj
k∪N(j,k)) p(zj

k | zN(j,k)) × a constant with respect to zj
k. 

The density p(I | zj
k∪N(j,k))  is related to the joint density p(zj

k∪N(j,k) , I) by p(zj
k∪N(j,k) , 

I) = p(I | zj
k∪N(j,k)) p(zj

k∪N(j,k)). The latter factor is a subset of the characterization of  
the geometry of the j,kth region and its inter-relation with its neighbors.  Therefore, 
the intensity information, given the geometry can be considered to be fully 
independent of the geometry, once the intensity information is analyzed in object-
relative coordinates. More precisely, this will be true except for the small effects of 
overlapping skirts of the apertures for adjacent regions. This proposition may well not 
hold for regions of just a few pixels or voxels, and for these the more common 
Gaussian aperture-based single intensity value might be the preferred basis for 
probabilities. 

From the independence proposition it follows that p(I | zj
k∪N(j,k)) can be given as a 

product of histograms relevant to scale j. Which histograms are these? Consider j=1, 
the scale level at which information global to the whole domain of the image is 
summarized. At that scale level, there is only one region, and histograms of each of its 
sub regions is needed, i.e.,  p(I | z1) = Πi∈ regions at scale 2 p(H2

i).  
A similar argument applies for smaller (larger index) scale levels. p(I | zj

k∪N(j,k)) 
requires the histograms of all sub-regions of zj

k, H
j+1

m for m a child of j,k, but as well 
it requires histograms of regions just exterior to zj

k. These may be N(j,k) or sub-
regions of these neighbors. Call these exterior regions N'(j,k). Thus we have 
concluded that          p(I | zj

k∪N(j,k)) = Πm a subregion of (j,k) p(Hj+1
m) Πi∈N'(j,k) p(Hj or  j+1

i). 

7   Results Using Proposed Statistical Framework 

We have created quite a complex structure. While we have argued each of its steps 
and might find the structure elegant, what other evidence can we adduce for its 
validity? As described in the following, object and histogram statistics in our 
examples have desirable properties. Tries at segmentation by posterior optimization of 
deformable m-reps using major parts of this structure are showing success. But far 
more validation is needed. In particular, we do not have results using all of the 
proposed framework together, but we have the following results, each using many of 
its components. 

In the companion paper by Pizer, Jeong, Lu, et al. [2005] we have shown that at an 
object scale level, using a set of three 3D objects {zj

k}k in the male pelvis without 
interstitial regions and using a way to describe p(shape of zj

k, inter-relationship of zj
k 

and zN(j,k)) that is explained in that paper, we find that samples from the generated 
probability distributions are nearly geometrically proper and that the probability 
distributions have intuitively reasonable means and principal modes of variation. 

We have carried out segmentation experiments using a three-scale structure on m-
rep models of the three objects: bladder, prostate, and rectum in CT images from a 
population over many days from the same patient.  In these experiments the three 
scale levels are the global scale, the object scale, and the medial atom, i.e. through-
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object-subsection, scale. The image contrasts at the boundary of the prostate are 
extremely low at large portions of its boundary (see Fig. 3). The log likelihood, i.e., 
log p(I | zj

k∪N(j,k)) values used were based on normalized intensity correlations rather 
than our proposed histogram-based probabilities. As illustrated in Fig. 3, on trials on 
multiple days of one patient, the segmentation appeared to be clinically acceptable 
[Chaney 2004]. 

Studies reported in the companion paper by Broadhurst et al. [2005] produced  
segmentation results of the bladder, prostate, and rectum on the aforementioned 
patient’s CTs for the global scale level only.  The results from a variety of methods 
for evaluating log p(I | zj

k∪N(j,k)) were compared. These included a variety of means of 
determing the structure and size of the regions over which histograms were computed. 
A method using histogram statistics showed improvements over the method using 
normalized correlation to measure log p(I | zj

k∪N(j,k)).   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Slice of CT of male pelvis and 3D segmentation result using a multi-scale posterior 
optimization of an m-rep, largely according to the schema described in this paper. Shown in 
white is a cross section of a manual segmentation, for comparison with the computer 
segmentation shown in color. 

8   Discussion 

The method of histogram probabilities has already been extended to populations I  
describing a collection of values at each pixel or voxel, where the values may be 
separate such as luminance and two chromanences, or they may be derived from I, 
such as a collection of derivatives of I or a collection texture features, e.g., obtained 
by Gabor filtering with different filters [Broadhurst 2004].  

We have much work left to do. The details of many of the stages of this schema are 
left to be designed, implemented and evaluated. Among the open questions are how 
precisely should the regions be formed; what is the best way to represent inter-region 
geometric relationships; what is the best way to produce statistics on these inter-
region geometric relationships; how precisely do we transition from the large and 
moderate scales at which m-reps seem a particularly attractive object representation to 
the scale of the individual voxel; how do we transition from histograms at these large 
and moderate scales to Gaussian scale space at the scale of the individual voxel. 
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Yet the initial results are quite attractive. They certainly overcome the problem 
associated with regional summaries into a single intensity, that intensities are located 
more precisely than their scale would suggest, when generating probabilities on image 
intensities. This problem is found in not only Gaussian scale spaces but also those 
produced from geometry-limited diffusion. We think our multiscale schema for 
working with deep structure of images in populations via geometric models in 
populations is worth following and recommend it to others for consideration and 
improvement. 
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Estimating the Statistics of Multi-object
Anatomic Geometry Using Inter-object

Relationships
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Abstract. We present a methodology for estimating the probability of
multi-object anatomic complexes that reflects both the individual ob-
jects’ variability and the variability of the inter-relationships between
objects. The method is based on m-reps and the idea of augmenting me-
dial atoms from one object’s m-rep to the set of atoms of an object being
described. We describe the training of these probabilities, and we present
an example of calculating the statistics of the bladder, prostate, rectum
complex in the male pelvis. Via examples from the real world and from
Monte-Carlo simulation, we show that this means of representing multi-
object statistics yields samples that are nearly geometrically proper and
means and principal modes of variations that are intuitively reasonable.

1 Introduction

Since multiple objects form a given anatomic region, there has been a desire
to characterize probabilistically populations of multi-object anatomic geometry.
Our companion paper [2] makes the case that probabilities on populations of
geometric regions are an essential part of multiscale probabilities on geometric-
model-based image intensities. In the schema described there regions of space
with predictable intensity histograms are placed in a neighbor relationship, and
this is done at a number of different discrete scale levels. In another of our
papers [5], three scale levels are under consideration: that global to the image,
that consisting of only objects without interstitial regions, and that consisting
of certain through-object subsections. Here we assume the ability to handle the
global scale level and through-object subsection scale level, and we focus on the
critical issue of how to produce probability distributions that reflect not only
region (object) shape but also inter-object geometric relationships.

The approaches to forming probability distributions on multi-object
anatomic geometry that have been tried so far consist of representing the ob-
jects and doing global statistics on these representations, as derived from some
dozens of training cases. Among the representations to which this approach has
been applied are point distribution models [3], diffeomorphisms from atlases [14],
distance functions or their levels sets [7], and our own m-reps [1]. We suggest
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that such global statistics pay inadequate attention to the objects themselves
and most especially to the inter-relations among objects. We provide a concrete
method that generates probabilities directly on objects and their relationships.

M-reps are representations of object interiors that consist of hierarchies of
sheets of medial atoms. They are designed to have the following properties: 1) By
medial atom transformations they explicitly capture local bending and twisting
(rotation), local magnification, and local elongation, and they separate these
from one another. 2) They are based on the subdivision of an object into figures,
i.e., main bodies, protrusions, and indentations. Moreover, they provide a fixed
topology of such branching for a population of objects and thus allow statistics
on this population. 3) They provide a local coordinate system for object interiors
that can provide correspondences across instances of an object. 4) They allow
neighboring geometric entities to be understood as medial atom transformations
of each other. This allows rich characterization of neighbor relationships, for
situations internal to a figure, between figures, or between objects.

We use m-reps as the geometric models and statistics using geodesic distance
on the curved manifold of a symmetric space [4]. Here we restrict the discussion
to objects each of which can be represented by a single sampled sheet of medial
atoms (Fig. 1), i.e., ”single-figure objects”. We show examples describing the
variability of the bladder, prostate, and rectum complex in the male pelvis within
a patient across a series of treatment days.

We assume that we are given a single-figure m-rep model for multiple objects,
for many training cases, and we assume further that the object complexes have
already been aligned across the cases and that the medial atoms correspond
across the cases.

Fig. 1. Medial atom with a section of implied boundary surface (left). An m-rep 3-
object complex for the bladder, the prostate, and the rectum of a patient in different
view in a box (right).

Limiting ourselves here to the object level of locality, we assume that any
truly global variation of the complex has been removed from each object, via the
residue technique described in [5]. We do not consider the interstitium between
and around objects.
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The subject of sections 2-6 is how to express and compute the probabilities
of the objects and of the inter-object geometry. In section 2 we overview the ap-
proach and then in succession treat its three major components, namely section
3: atom augmentation to simultaneously capture objects and their relations to
other objects, section 4: propagation of the inter-object relations to remaining
objects, and section 5: inter-object residues to describe the variation remaining
after the propagation of effects from other objects. In section 6 we explain how
to train probabilities for objects by successive PGA’s on object residues.

We say that a geometric model for a complex of non-interpenetrating ob-
jects is proper if a) the topology of the objects is retained, b) each object in the
model does not have singularities or folds of its boundary or interior, and c) the
non-interpenetration of objects is retained within the tolerances appropriate for
the scale of the description. Many previous methods for estimating inter-object
probability distributions have produced samples some of which are decidedly
improper. In section 7 we test our method by illustrating that models sampled
from our probability distributions on intra-patient bladder, prostate, and rec-
tum deformations are nearly proper and that the means and principal modes of
variation of these distributions are intuitively reasonable. We also briefly discuss
application of these ideas to segmentation by posterior optimization. Section 8
discusses further opportunities for evaluation, and extensions and alternatives
to the proposed methods.

2 Overview of the Approach

We assume that in each case we have n objects, with m-reps z2 = {Mk}n
k=1

where Mk is an ordered set of medial atoms and z2 describes the geometric
representation of objects at the second scale level as in [2]. Each interior medial
atom requires an 8-tuple to represent, describing a hub and two equal-length
spokes (Fig. 1), and each grid-edge medial atom requires a 9-tuple to represent,
describing a hub, two equal-length spokes, and a third spoke formed from their
bisector, which may be of a different length. In our present approach we assume
that the objects will be provided in an order of decreasing stability, i.e., whose
posterior probability, based on both geometric and intensity variability and edge
sharpness, are in decreasing levels of tightness. In this work we provide object
statistics in this order, treating each object once. The details of dealing with
these objects’ statistics in sequence are described in section 6. In section 8 we
discuss the extension to a form of a Markov process described in [2].

The main new idea of this paper (Fig. 2) is that while estimating the
statistics of a particular object Mk we deal with that object’s inter-relation
with other atoms by augmenting highly correlated atoms Ak in the remain-
ing objects Rk = ∪i>k(Mi) to Mk to produce “augmented” representations
Uk = Mk ∪Ak. We can write p(z2) = p(Uk, Rk) = p(Uk)p(Rk|Uk). In specifying
p(Rk|Uk), we divide the effect into a deterministic prediction from Uk and an
Uk-independent probability on the residue of Rk from that prediction. When
comparing this to the equation in the companion paper [2], p(z2

k | zN(2,k)) =
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Fig. 2. A discrete m-rep for the bladder (M1), the prostate (M2), the rectum (M3)
3-object complex of a patient. The augmented atoms in the prostate forming A1 are
shown with their hub enlarged (left). The prostate (M2), the rectum (M3) of the same
patient the enlarged atoms in the rectum form A2 (right).

p(shape of z2
k, inter-relation of z2

k, and zN(2,k)), we see that in effect we are de-
scribing the shape of Rk by its residue and the interrelation with Mk via Uk.

We now describe the other aspect of our new idea, the deterministic propa-
gation of augmenting atoms’ movement in the statistics of one augmented object
to the remainder of the objects to be processed. The idea is that if an object
changes position, pose, size, or shape, its neighboring objects will change sympa-
thetically. In particular (Fig. 3), let all of the atoms in these other objects whose
statistics are yet to be determined be Rk. The changes in Ak will be reflected in
sympathetic changes in Rk \Ak

1 before the statistics on Rk \Ak are calculated.
The details of this propagation are discussed in section 4.

We synthesize these probability distributions via principal geodesic analysis
(PGA)[4]. This method of augmentation is discussed further in section 3.

Fig. 3. Assuming we have produced statistics for the augmented bladder U1, which
has augmenting atoms A1 in the prostate (M2), we illustrate the sympathetic change
of R1 \ A1 caused by A1

1 Recall that the notation A \ B means the set difference A minus B.
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3 Objects Inter-relation by Augmentation

Because we have evidence that atoms in one object that are near another object
are most highly correlated with that other object, we describe the inter-relation
of a multi-object using these nearby atoms for augmentation. In the male-pelvis
example of Fig. 2, medial atoms in bladder M1 should be more highly correlated
with medial atoms nearby in prostate A1 than those in the rest of the prostate
or in the rectum R1 \ A1. Thus we let the nearby prostate atoms form A1,
producing the representation of the augmented bladder U1. We study the effect
of the deformation of the bladder on the augmenting atoms and then study the
relation of changes in the augmenting atoms A1 to that of rest of the prostate
and the rectum, R1 \A1. We use the latter results in a stage we call prediction,
which is explained next.

4 Prediction of Movements from Augmentation by Using
the Shape Space of the Remaining Objects

In prediction we reflect a change in Mk in the statistics of Rk by predicting how
Rk\Ak bends, twists or warps from the change of Mk through augmenting atoms
Ak. In doing so, we take account of the shape space of the remainder objects Rk

as suggested in [6], but using PGA in a nonlinear symmetric space rather than
the principal component analysis used in [6].

Recall that PGA involves first finding the mean µ of m-reps {Mi ∈ M}N
i=1,

whereM is the symmetric space of an m-rep Mi and N is the number of training
cases; projecting {Mi}N

i=1 to the tangent space TµM at µ by the log map2

(logµ : M→ TµM); and then doing PCA in the tangent space, which yields a
set of principal directions {vl}h

l=1 in TµM. Taking the exponential map (expµ :
TµM → M) of {vl}h

l=1 gives a set of principal geodesics in M, which in turn
generates a submanifold H of M. H is the shape space in which different modes
of variations restricted to H of {Mi}N

i=1 are described via principal geodesics.
The projection of Mi onto the shape spaceH, ProjH(Mi)3, describes the unique
variation within H nearest in geodesic distance to Mi.

Now consider the augmented m-rep object Uk = (Mk ∪Ak) and Rk (Ak ⊂
Rk). Let µr and Hr be the mean and the shape space generated by principal
geodesics in the symmetric space Mr of Rk, which we can obtain by performing
PGA on training cases of Rk. If we know how Uk deforms, i.e., how Mk and
Ak change together, ProjHr (Ak) predicts how the remaining object Rk changes
sympathetically through Ak in the shape space Hr:

ProjHr (Ak) = expµr

(
hr∑
l=1

〈logµr
(Ak), vl〉 · vl

)
, (1)

2 Refer to [4] for detailed explanation of the log map and the exponential map.
3 More precisely, the projection operator ProjH : M → H is approximated by

ProjH(M) = expµ
h
l=1〈logµ(M), vl〉 · vl . For detailed explanation, refer to [4].
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where {vl}hr

l=1 are principal directions in the tangent space at µr corresponding
to the principal geodesics in Hr and the dimension of logµr

(Ak) is adjusted to
match with that of vl by adding zeros to logµr

(Ak) for parameters corresponding
to Rk \Ak. Then the prediction for the remainder Rk can be defined as

Pred(Rk; Ak) := ProjHr (Ak) . (2)

Notice that Pred(Rk; Ak) is also an m-rep.

5 Residues of Objects in Order

If we describe the changes in Uk and the sympathetic changes in Rk \ Ak, all
that is left to describe statistically is the remaining changes in Rk after the
sympathetic changes have been removed. If the objects are treated in order
and each object has augmenting atoms only in the next object, this will mean
that n probability distributions will need to be trained, namely, for U1, for U2

after the sympathetic changes from U1 have been removed, ... , for Un after the
sympathetic changes from U1, U2 . . . , and Un−1 have been removed. The removal
of sympathetic changes is accomplished via the residue idea described in [5]. Next
we explain how such residues are calculated between a predicted remainder N0

and the actual value M of that remainder.

5.1 Difference of Medial Atoms

A medial atom m = (x, r, u,v) is defined as an element of the symmetric space
G = R3 × R+ × S2 × S2 where the position x ∈ R3, the spoke length r ∈ R+,
and two unit spoke directions u,v ∈ S2 (S2 is a unit sphere). If an m-rep has d
medial atoms, the m-rep parameter space becomes M = Gd. Let Rw represent
the rotation along the geodesics in S2 that moves a point w ∈ S2 to the north
pole p = (0, 0, 1) ∈ S2. For given any two medial atoms m1,m2 ∈ G where
mi = (xi, ri, ui,vi), i = 1, 2, the difference between them can be described as
follows:

� : G×G −→ G
m1 �m2 := (x1 − x2,

r1
r2

, Ru2(u1) Rv2(v1)) .
(3)

m1 �m2 is the difference between m1,m2 relative to m2 coordinates. Like m1

and m2, m1 �m2 ∈ G.
Corresponding to the difference operator �, the addition operator ⊕ can be

defined as:

⊕ : G×G −→ G
m⊕∆m := (x + ∆x, r ·∆r, R−1

u (∆u), R−1
v (∆v)) (4)

for given m = (x, r, u,v) and the difference ∆m = (∆x, ∆r, ∆u, ∆v). This
operation is neither commutative nor associative. As an m-rep object is a collec-
tion of medial atoms, these operations can be individually applied to each atom
of the object.
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5.2 Residues in an Object Stage

Our probabilistic analysis proceeds object by object in order. After some object
has been described probabilistically and its sympathetic effect has been applied
to its remainder, there is a further change in the remaining objects to be de-
scribed. We call that further change the residue of the remainder objects with
respect to the probability distribution on the first. More precisely, let M ∈ M
be an m-rep or an m-rep residue of one object fitting a particular training case
where M is a symmetric space of M and let p(N) be a probability distribution
on N ∈M describing part of the variation of M. Notice that if D(p) represents
the domain of p, then D(p) is a submanifold of M. Relative to the probability
distribution p, N0, the closest m-rep to M in D(p), is

N0 = arg min
N∈D(p)

d(M,N), (5)

where d(M,N) is the geodesic distance on M. Then the residue ∆M of M with
respect to p can be defined as

∆M := M�N0 . (6)

In the method we are describing, we use the prediction Pred(M;A) from a set
of augmented atoms A in M to M’s previous object (of which movements have
an effect on M) as an approximation to N0 because the prediction is made on
the shape space of M and the augmentation can give a good estimation to the
overall effect of M’s previous object. We expect the prediction Pred(M;A) to
be close to N0. Thus we compute ∆M := M� Pred(M;A).

6 Training the Probabilities for Objects

Training the probabilities for the object is done via successive PGA’s on the
object residues. Using the notation from Sec. 2, let Oi be a multi-object m-
rep residue in case i from which any truly global variations are removed from
{M i

k}k∈K , where I = {1, . . . , N},K = {1, . . . , n} are index sets for N training
cases and n objects. Then Oi = {∆M i

k}k∈K forms a multi-object m-rep residue
of the ith training case.

The residues {Oi}i∈I are treated in the order of objects Mk from k = 1
to n. First we apply PGA on {∆U i

1}i∈I , the residue of the first object, to get
the mean µ1 and a set of principal variances and associated principal geodesics
{expµ1

(vl
1)}n1

l=1, where vl
1 ∈ Tµ1M1. This mean, principal variances, and prin-

cipal geodesics provide our estimate of the probability distribution of ∆U1. Let
H1 be a submanifold of M1, where M1 is the symmetric space for ∆U1. The
projection of ∆U i

1 onto the geodesic submanifold H1, ProjH1(∆U i
1), describes

the variation unique to ∆U i
1 in H1. Now we need to update the residue {∆Ri

1}i∈I

to reflect the sympathetic effect from ∆M1 on ∆R1 by ∆A1. That is done using
the prediction Pred(∆Ri

1; ∆Ai
1) as described in Sec. 4.
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So the residue for the next object (the second object) that we use to apply
PGA is no longer {Oi}i∈I . The updated residue of the remainder to the first
object becomes

∆2Ri
1 = ∆Ri

1 � Pred(∆Ri
1; ∆Ai

1) i ∈ I . (7)

Once we have the new updated residue ∆k−1U i
k ⊂ ∆k−1Ri

k for the kth object,
k = 2, . . . , n, we repeat the same steps 1) applying PGA on ∆k−1U i

k and 2)
updating the residue of the remainder, which produces a set of means {µk}k∈K

and sets of principal geodesics {{expµk
(vl

k)}nk

l=1}k∈K on object residues.

7 Geometrically Proper Objects in Probability
Distributions in the Male Pelvis

Samples being geometrically improper has been a problem for other methods
such as PCA on distance functions or on dense PDMs. Examples of what we
mean by geometrically improper is wrong topology, interpenetration of separated
objects, folding, and singularities such as unwanted corners and cusps. There are
two reasons why we would expect that our methods would avoid geometrically
improper samples from their probability distributions.

1) M-reps are founded on the idea that using primitive transformations in-
cluding local twisting and bending of objects will yield an economical repre-
sentation of the single and multi-object transformations of anatomy between
individuals or within an individual over time. When using such transformations
in the representation methods and in particular in the methods of description of
object inter-relations via augmentation and prediction, nonlinear PGA is neces-
sary to produce sample object complexes that are geometrically proper.

2) The regular grids of medial atoms that we generate from training binary
images of objects [9] are designed to have large geodesic distance to improper
entities on the manifold M. Thus we might hope that objects within [−2,+2]
standard deviations will also be proper. Analysis of our objects using a criterion
based on the radial shape operator of [8] could be used to avoid improper models,
but this criterion has not been applied in the work described in this paper.

The most basic test of our probability distributions is to visually judge
whether those generated samples are proper and whether the principal geodesic
directions derived from real patient data explain variations we see in the training
samples. Because our training set is just a particular sample subset of a popu-
lation of m-reps, we wish to know how our method would fare on other training
sample subsets. We can accomplish this by generating new random samples from
our probability distributions and test whether training from these samples pro-
duces a probability distribution whose samples are proper.

We generate the new samples by assuming that each tangent plane principal
component from the original training follows the standard normal distribution
once we scale the principal directions by the square root of corresponding eigen-
values in the tangent space. Thus, for each object residue we randomly sample
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Fig. 4. Left: tangent spaces at object residue means from real patient data. Mid-
dle: m-rep parameter space. Right: object residue means from generated training
data. The movie of 100 sampled m-reps from patient 1 and patient 2 data is
at http://midag.cs.unc.edu/pubs/papers/movies/100SamplesPat1and2.avi. In the
movie the point of view changes from time to time.

each principal component following the standard normal distribution to gener-
ate random points on each tangent space about the mean {µk}k∈J . By taking
exponential maps of those points, we generate m-reps and residues that can be
combined by ⊕ to produce new training sample m-reps. PGA on such a new sam-
pled training set yields a new mean and set of principal directions and variances,
whose samples we can judge as to how proper they are.

We applied our new method to obtain the probability distributions from two
training sets, each of which are obtained from bone-aligned male-pelvis CT im-
ages of a real patient over several days. A single-figure m-rep was fit to each
organ: 4x6 grids of medial atoms for the bladder, 3x4 grids for the prostate,
and 3x7 grids for the rectum. The total number of medial atoms is 57, so the
dimension of the m-rep parameter space is 456. Our software to fit the single
figure m-reps to binary image of each organ provides reasonable correspondence
of medial atoms across cases by penalizing irregularity and rewarding correspon-
dence to one case [9]. Inter-penetrations among m-reps of the three objects were
restricted in the fitting [9] of each training case. We have 11 cases (m-reps) of
one patient (patient 1) and 17 cases of another patient (patient 2).

Figure. 5 displays the first modes of variation of patient 1 and 2 at PGA
coefficients -2, -1, 1, 2 standard deviations of bladder with prediction, prostate
with prediction and rectum in Fig. 5 from the top row to the bottom row.

In these movies, as well as the ones seen in fig. 4, we see the following behav-
iors: 1) The m-reps produced as samples or chosen along principal geodesics yield
limited inter-object penetration, as desired since the training samples have small
inter-object penetration. 2) The surfaces of the m-rep sample implied objects are
smooth, with few exceptions. Folding is not observed, and the introduction of
sharp ridges happens seldom, only at crest positions which are sharp in some of
the training cases. 3) The principal geodesics seem to correspond to anatomically
observed changes. For example, we see strong growth in the bladder correspond-
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Fig. 5. Illustration of first modes of variation of patient 1 in the box on the left
and that of patient 2 in the box on the right. The movie that shows the first modes
of variations of patient 1 and then patient 2 is at http://midag.cs.unc.edu/pubs/

papers/movies/VariationsPat1and2.avi.

ing to filling and strong bulging of the rectum corresponding to the introduction
of bowel gas. Also, the prostate residue shows only modest shape changes, a
behavior expected from the fact that the prostate is typically quite hard.

It is in this sense that we say that our statistical method provides samples
that are “nearly geometrically proper and means and principal modes of varia-
tions that are intuitively reasonable.”

In addition to the evaluation of m-rep probabilities just described, we can also
judge the probabilities A) on the ability of the PGA to extract known indepen-
dent random deformations in simulations and B) by their usefulness in segmen-
tation. A) In simulations with compositions of independent random bendings,
twistings, and magnifications of an ellipsoid, PGA extracted these basic defor-
mations very well. B) PGA m-rep probabilities trained from images of a given
patient on a variety of days were used as the prior in segmentation by posterior
optimization of m-reps of the bladder, prostate, rectum complex in target images
of the same patient on different days. The details of the application to segmen-
tation are given in [2] and [12], object segmentation using histogram statistics
is described in [15], and the results on a few cases, agreeing well with human
segmentations, have been reported in [13]. Briefly, the results are anecdotal but
encouraging.

8 Discussion and Conclusion

We presented new ideas in estimating the probability distribution of multi-object
anatomic objects via augmentation and prediction with principal geodesic analy-
sis suggested in [4]. As described in our companion paper [2], a schema involving
neighboring regions at multiple scales has much to recommend it. At each scale
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level in this schema, except the global level, a means is needed to produce statis-
tics reflecting region shape and inter-region relations for neighboring regions.
This paper has shown the viability of a particular method for producing these
statistics.

We have also applied our approach of augmentation and prediction to com-
pute statistics of m-reps of multi-figure objects, the structure of which is de-
scribed in [10]. We take hinge atoms as augmented atoms and predict the sym-
pathetic change of a subfigure from the change of its host figure [11].

In this paper, we have limited the residue to the object level of locality. But
we can compute finer residues at the medial atom level of locality and do further
analysis as described in [5].

Other evaluations of the sample probability distributions generated using
Monte Carlo approaches to generate new sample training sets are in progress.
These involve measuring the bias and reliability of the resulting probability dis-
tributions and determining the number of training samples required.

We can avoid ordering the objects by considering the mutual neighbor rela-
tion in augmentation. This extension from the present approach to the Markov
Random Field approach as discussed in [2] is suggested by real situations such as
male-pelvis example that we used: not only can the bladder induce a change in
the prostate and rectum but also the change of a prostate can induce sympathetic
change in the bladder and rectum, etc.

We have chosen the augmented atoms based on the distance between atoms
in one object and the other because we have preliminary evidence done by [5]
that those nearby atoms are highly correlated. Another test needed is whether
the remaining atoms are independent of the primary object when conditioned
on the augmenting atoms. In addition, attention is needed to defining the global
statistics so that the object probabilities and the global probabilities are condi-
tionally independent of each other. In this way the global probabilities will not
simply involve principal geodesic analysis of ∪n

k=1Mk.
The success of geodesic statistics depends on the initial alignment of the

training cases. In the example used in this paper, a global alignment of the cases
was accomplished using a rigid object, the pelvic bones. In multi-patient cases,
however, the alignment needs to be accomplished by the Procrustes algorithm
using the geodesic distance metric [4]. Once the global statistics have been com-
puted, it may be desirable to realign for each object, before the residue for that
object is analyzed.

Finally, a possible measure to explain the inter-object relation is canonical
correlation. Canonical correlation explains the relation of two sets of variables
each in a linear space. Here we wish to relate Mk and its neighbors. Because
the principal geodesics are defined in tangent spaces to the symmetric space M,
we speculate that we can incorporate this canonical correlation directly as an
alternative to the method described in this paper.

We thank Edward Chaney, Gregg Tracton, and Derek Merck for pelvis mod-
els. This work was done under the partial support of NIH grant P01 EB02779.
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Abstract. We present a novel approach to statistically characterize his-
tograms of model-relative image regions. A multiscale model is used as
an aperture to define image regions at multiple scales. We use this image
description to define an appearance model for deformable model segmen-
tation. Appearance models measure the likelihood of an object given a
target image. To determine this likelihood we compute pixel intensity
histograms of local model-relative image regions from a 3D image vol-
ume near the object boundary. We use a Gaussian model to statistically
characterize the variation of non-parametric histograms mapped to Eu-
clidean space using the Earth Mover’s distance.

The new method is illustrated and evaluated in a deformable model
segmentation study on CT images of the human bladder, prostate, and
rectum. Results show improvement over a previous profile based appear-
ance model, out-performance of statistically modeled histograms over
simple histogram measurements, and advantages of regional histograms
at a fixed local scale over a fixed global scale.

1 Introduction

Multiscale image descriptors are important for understanding and segmenting
deep structures in images. Deformable geometric models have also been shown to
be a powerful tool for segmentation. Geometric models generate model-relative
image descriptors, which are often used in the human visual system and whose
importance is argued in the companion paper by Pizer et al [11]. In this pa-
per, we use a multiscale model-relative image description for the segmentation
of 3D deformable objects in medical images. Automatic segmentation methods
that statistically learn the likelihood of an object given an image have several
desirable qualities. We define an image likelihood measure using non-parametric
histograms as our basic image measurement and describe a new method to sta-
tistically learn their variation. These histograms are measured in model-relative
regions defined at a particular scale using the geometric model as an aperture.

Appearance models at extremely local scale levels are based on the correlation
of pixel intensities. Intensities are acquired along profiles normal to the object
boundary [4,15] or from entire model-relative image regions [3,6]. These methods
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can be used in conjunction with image filters to summarize information at a
larger spatial scale and to measure image structure such as texture, gradients,
or corner strength [14]. Local methods, however, have difficulty capturing the
inter-relations among pixel intensities in a region.

Region based methods, which are at larger spatial scales, are better than local
methods at capturing pixel inter-relations. This is accomplished by aggregating
pixel intensities over global image regions such as object interior or exterior, in
one of two ways. In the first, region statistics, such as mean and variance, are
computed. These statistics are either learned during training or functions of them
are defined to be minimized [2,16]. Although the variation of region statistics can
be learned during training, the statistics themselves capture limited information.
In the second, each region is represented by a histogram, and a distance to a
learned reference histogram is defined. Histograms provide a rich estimate of
a region’s intensity distribution but previous work only specifies a reference
histogram and not its expected variation [5].

In this paper, we use a region based method that defines several model-
relative regions. This allows a multiscale image description that can be used at a
large scale level with one or two global regions defined per object, or at more local
scale levels with many smaller regions per object. We segment images using this
image description at three fixed scale levels. First, we use global image regions
as in previous methods. Then, we describe two approaches to define increasingly
local regions. These novel local region approaches have the advantage of his-
togram measurements with increased locality and tighter distributions, which
help drive our segmentation algorithm to a more clearly defined optimum. In
order to define these local regions we need a shape model that specifies a voxel
to voxel correspondence near the object boundary; for this we use m-reps (see
section 3.1) [9,10]. To form a statistical description of each region, we map non-
parametric histograms to points in Euclidean space using the Earth Mover’s
distance (EMD) [1,7,13]. Then, we apply standard statistical tools to model his-
togram variation. Straight-line paths between histograms in the resulting space
provide interpolated histograms representing plausible distributions. The lack of
distribution assumptions allow inhomogeneous regions to be modeled, though
this typically results in loose distributions. In this case, we define local regions
to reduce distribution variability. Therefore, we have an image descriptor that
can model any intensity distribution while maintaining tightness using regions
at an appropriate scale.

Appearance models allow two simplifying assumptions when defining the
probability of an image given a model. Image dependence on a model can be
decomposed into describing the image relative to the model and further correla-
tions between the image and object shape. Appearance models can reasonably
assume that model-relative images have intensities with no further probabilistic
dependence on object shape. The probability of a model-relative image is deter-
mined using several image measurements, which are also often assumed to be
independent. However, local measurements are highly interrelated due to their
small scale so it is inaccurate to consider them as independent. It is also diffi-
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cult to model local measurement inter-relations, since this requires a global high
dimensional appearance representation with a complicated and hard to train co-
variance [3]. On the other hand, as argued in the companion paper [11] we can
reasonably assume that larger scale regional measurements of a model-relative
image are independent, if the image is divided into anatomically based local
regions and geometric variation is entirely captured by the shape prior.

Thus, we assume regional image measurements relative to object shape are
conditionally independent. This defines image likelihood as the product of the
probability densities derived from each region.

In section 2 we introduce our histogram methodology and construct a sta-
tistically learned histogram likelihood measure. In section 3 we overview our
segmentation framework and give segmentation results using global image re-
gions. In section 4 we extend this work to local image regions.

2 Statistical Modeling of Non-parametric Histograms

We fully train a non-parametric histogram based appearance model. To do this
we map histograms to points in Euclidean space in such a way that straight-line
paths between two points produce a natural interpolation between the corre-
sponding histograms. This mapping allows us to use standard statistical tools,
such as Principal Component Analysis (PCA) and Gaussian modeling.

In section 2.1 we construct this mapping and consider properties of the re-
sulting space. In section 2.2 we define the likelihood of a histogram. In section
2.3 we provide an example.

2.1 Mapping Histograms to Euclidean Space

Our mapping can be understood by considering the similarity measure defined
between two histograms that will correspond to Euclidean distance. We use
the EMD, which was introduced by Rubner et al. for image retrieval [13] and
has since been shown to be equivalent to the Mallows distance [8]. The EMD
representation we use is described for texture classification in [7] and used to
build statistical models in [1].

The EMD, and the Mallows distance for discrete distributions, can be thought
of as measuring the work required to change one distribution into another, by
moving probability mass. The position, as well as frequency, of probability mass
is therefore taken into account yielding two major benefits. First, over-binning
a histogram, or even using its empirical distribution, has no additional con-
sequences other than measuring any noise present in the distribution estimate.
Second, this distance measure to some extent mimics human understanding [13].

The Mallows distance between continuous one-dimensional distributions q
and r, with cumulative distribution functions Q and R, respectively, is defined
as

Mp(q, r) =
(∫ 1

0

|Q−1(t)−R−1(t)|pdt
)1/p

.
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For example, consider the Mallows distance between two Gaussian distribu-
tions N(µ1, σ

2
1) and N(µ2, σ

2
2). For p = 2, this distance can be shown to be√

(µ1 − µ2)2 + (σ1 − σ2)2.
For discrete one-dimensional distributions, consider two distributions x and

y represented by empirical distributions with n observations, or equi-count his-
tograms with n bins and the average value of each bin stored. Considering these
values in sorted order, x and y can be represented as vectors x = n−1/p ∗
(x1, . . . , xn) = (x′

1, . . . , x
′
n) and y = n−1/p ∗ (y1, . . . , yn) = (y′1, . . . , y′n) with

x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn. The Mallows distance between x and y is then
defined as the Lp vector norm between x and y

Mp(x, y) =

(
1
n

n∑
i=1

‖xi − yi‖p

)1/p

=

(
n∑

i=1

‖x′
i − y′i‖p

)1/p

.

Therefore, this representation maps histograms to points in n-dimensional
Euclidean space in which distances are understood as M2 histogram distances.
In this space, there is a particular straight line path of interest. The mean of
any histogram can be changed by an arbitrary amount by adding this amount to
every bin in the histogram. Since the mean of a histogram represents its position,
changes in histogram position are orthogonal to changes in shape.

Another property of this space is that Gaussian distributions exist in a lin-
ear two-dimensional subspace. As for general distributions, one axis of this space
represents the Gaussian’s mean. As shown above, the remaining orthogonal di-
rection is linear in the Gaussian’s standard deviation.

Points in a convex portion of this space represent valid histograms. That is,
a point x is a valid histogram if and only if x1 ≤ . . . ≤ xn. Therefore, the mean
of a set of histograms, or any interpolated histogram, will always be valid. In the
next section, the likelihood of a histogram is computed assuming that the mean
of a set of histograms and straight-line paths from the mean are representative
of the input set. In section 2.3 we demonstrate this with an example.

2.2 Histogram Likelihood

In this section, we statistically define a histogram’s likelihood. We can use stan-
dard statistical tools for this task since we have sensibly mapped histograms to
Euclidean space. For each region, we construct a multi-variate Gaussian model
as a parametric estimate of a histogram’s likelihood. Gaussian models stretch
space, modifying the M2 metric, to account for the variability in the training
data. Thus, Gaussian models naturally enhance the M2 metric even though they
are not proper in the sense that points representing invalid histograms are as-
signed a non-zero probability.

When constructing a multi-variate Gaussian model, we cannot estimate a full
covariance matrix since we are in a high dimension low sample size situation.
This is a standard problem in medical imaging since large training sets are often
unavailable, which are required to accurately estimate the covariance of a model
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Fig. 1. Histograms from interior (red) and exterior (blue) bladder, prostate, and rectum
regions in 17 images of the same patient

containing a desirable number of histogram bins. Therefore, we estimate a non-
singular covariance of the form

k =
m∑

i=1

UiU
T
i + σI

where each Ui is a vector and I is the identity matrix. We compute the maximum
likelihood estimate of k for a fixed m given the training histograms in each region.
This estimate can be computing using PCA. The Ui vectors correspond to the
principal directions with the m largest eigenvalues, λi. These vectors are scaled
by λi − σ. σ corresponds to the average squared projection error normalized by
the number of remaining dimensions.

As discussed in the companion paper [11], regions contain incorrectly labeled
voxels as a consequence of the object model having its own scale. When col-
lecting training histograms for each region, we remove such voxels. This allows
us to model the true variability in each region and to define a more accurate
optimum for segmentation. This approach does not, however, take into account
the expected variation of the actual training segmentations. This can result in a
covariance estimate that biases segmentations towards either the object interior
or exterior. Therefore, we create an unbiased covariance estimate by normaliz-
ing each covariance matrix such that the average Mahalanobis distance of the
training histograms is the same in each region.

2.3 Global Regions Example

We present the following example to demonstrate the construction of a his-
togram’s likelihood. We use 17 CT images of the pelvic region from a single
patient. The interior and exterior of the bladder, prostate, and rectum, within 1
cm of each boundary, define six global regions. For each region, figure 1 shows
the 17 25 bin histograms. In general, the interior of the bladder, which consists
of bladder wall and urine, has higher CT values than its exterior. The bladder
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Fig. 2. Histograms representing the mean of 17 interior and exterior regions. Shown
along with each mean is ±1.5 standard deviations along the first (left) or second (right)
principal direction from the mean (slightly smoothed). The first mode often contains
more tail and less peak movement than the second mode. Some of these tail movements
have been cropped out of the graphs.

exterior consists of fatty and prostate tissue, with the heavy tail representing the
latter. We only model a portion of the rectum and hence its exterior contains
interior rectum intensities, making the exterior rectum histogram bimodal.
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For each region, we compute the mean of the 17 histograms, m = 2 principal
directions of variation, and σ. Figure 2 shows each region’s mean and ±1.5
standard deviations along each principal direction from the mean. The mean
and each mode appear representative of the training data.

3 Segmentation Using Global Regions

In this section we use global regions, as defined in section 2.3, for segmentation.
To do this we first discuss in section 3.1 our shape model and segmentation
framework. In section 3.2 we then present segmentation results using these global
image regions.

3.1 The Segmentation Framework

Our goal is to automatically segment the bladder, prostate, and rectum in CT
images. We use the m-rep model of single 3D figures, as in [10], to describe
the shape of these deformable objects. As detailed in the companion paper [12],
the object representation is a sheet of medial atoms, where each atom consists
of a hub and two equal-length spokes. The representation implies a boundary
that passes orthogonally through the spoke ends. Medial atoms are sampled
in a discrete grid and their properties, like spoke length and orientation, are
interpolated between grid vertices. The model defines a coordinate system which
dictates surface normals and an explicit correspondence between deformations
of the same m-rep model and the 3D volume in the object boundary region. This
allows us to capture image information from corresponding regions.

M-reps are used for segmentation by optimizing the posterior of the geometric
parameters given the image data. This is equivalent to optimizing the sum of
the log prior and the log likelihood, which measure geometric typicality and
image match, respectively. Geometric typicality is based on the statistics of m-
rep deformation over a training set, described in the companion paper [12]. We
use the method described in section 2 for the image match.

In this paper, our primary concern is to determine the quality of the image
likelihood optimum defined by our appearance model. We evaluate this by seg-
menting the bladder, prostate, and rectum from an intra-patient dataset consist-
ing of 17 images. Each image is from the same CT scanner and has a resolution
of 512×512×81 with voxel dimensions of 0.977×0.977×3.0 millimeters. These
images are acquired sequentially during the course of the patient’s treatment
for prostate cancer. As an initial test of our framework, we segment each image
using a leave-one-out strategy, which supplies sufficient training data to estimate
adequate and stable statistics. We estimate the model prior and likelihood us-
ing m-reps fit to manual segmentations of the training images. We gather shape
statistics for the combined bladder, prostate, and rectum object ensemble and
define a shape space using six principal geodesics, which captures approximately
94% of the shape variance. We ignore the model prior and perform a maximum
likelihood segmentation within the shape space.
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We compare our segmentation results to a profile based method. This profile
method uses normalized correlation with profiles from the first image and is
described in [15]. All other aspects of these segmentation algorithms are identical,
including the shape space and automatic rigid body initialization. Comparisons
are made relative to manual segmentations and put into context by showing our
shape model’s ability to represent the manual segmentations during training.
Training performance serves as a baseline for the best expected performance of
our appearance model.

3.2 Segmentation Results Using Global Regions

We now evaluate the performance of three versions of our appearance model. For
all three, we use two global regions for each object, defined as the object interior
and exterior within a fixed 1 cm collar region of the boundary. We represent
each region using a 25 bin equi-count histogram.

The three versions of our appearance model learn increasingly more infor-
mation during training. The Simple Global model creates a reference histogram
for each region from the first image. The image match is the sum of M2 dis-
tances to each reference histogram. This model can be directly compared with
the profile approach, since only the first image is supplied to both. The Mean
Global model calculates the average histogram for each region using all the other
images. In this case, the image match is the sum of M2 distances to each average
histogram. The last model, Gaussian Global, uses the fully trained likelihood
measure introduced in section 2.2. The image match for this model is the sum
of Mahalanobis distances in each Gaussian model. Each model independently
learns two principal directions of variation and σ.

Table 1 reports volume overlap, defined as intersection over union, and av-
erage surface distance, defined as the average shortest distance of a boundary
point on one object to the boundary of the other object. Results show segmen-
tation accuracy improves with increased statistical training. Table 1 also shows
a significant improvement of the global histogram based appearance models over
the previous profile based model. Directly comparing the profile and histogram

Table 1. Segmentation results of our appearance model using global image regions.
Results are measured against manual contours, and compared against a previous profile
based method and the ideal of our shape model attained during training.

Volume Overlap Ave. Surface Dist. (mm)
Appearance Model Bladder Prostate Rectum Bladder Prostate Rectum

Training 88.6% 87.8% 82.8% 1.11 1.05 1.15
Profile 79.8% 76.0% 64.8% 2.07 2.20 2.72
Simple Global 80.7% 78.4% 67.1% 1.97 1.94 2.47
Mean Global 81.8% 79.4% 68.0% 1.84 1.86 2.42
Gaussian Global 84.8% 79.6% 72.1% 1.53 1.86 2.00
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based methods, Simple Global achieves better results for all three objects. In the
next section we further improve these results using local image regions.

4 Defining Local Image Regions

Next, we use the appearance model described in section 2 with local model-
relative image regions. Local regions have tighter intensity distributions than
global regions since intensities are more locally correlated. This results in an
image likelihood measure with a more clearly defined optimum, especially when
global regions consist of multiple homogeneous tissue regions. Since smaller re-
gions are summarized, however, local regions provide less accurate distribution
estimates. They also require a shape model that defines a voxel correspondence
near the object boundary.

Our dataset contains at least two examples of global region inhomogeneity.
First, the exterior bladder region consists of both prostate and fatty tissue.
The bowel can also be present, though this is not the case in this dataset. A
second example is the exterior rectum region. We only model the portion of the
rectum near the prostate, so there are two arbitrary cutoff regions with exterior
distributions matching those of the rectum’s interior.

We describe two approaches to define local regions. In section 4.1 we man-
ually partition the global interior and exterior regions. In section 4.2 we define
overlapping regions centered around many boundary points. In section 4.3 we
give results using both methods.

4.1 Partitioning Global Image Regions

Local regions can be defined by partitioning an object’s surface, and hence the
3D image volume near the surface, into local homogeneous tissue regions. Such
a partitioning can either be specified automatically, based on distribution esti-
mates from a training set (see future directions), or manually delineated using
anatomic knowledge.

In this section, we manually define several interior and exterior local regions
for the bladder, prostate, and rectum using limited anatomic knowledge. We used
several heuristics to create our manual partitions, which are shown in figure 3.
First, more exterior regions are defined since there is more localized variability
in the object exterior. For the bladder model a local exterior region is defined
near the prostate. A local region is also defined for the portion of the bladder
opposite the prostate since this region experiences the most shape variability
between images. Lastly, for the rectum model a local exterior region is defined
in each arbitrary cutoff region.

4.2 Local Image Regions

An alternative method to define local regions is to consider a set of boundary
points that each describe the center of a region. Define an interior and exterior
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(a) Interior Partitions (b) Exterior Partitions

Fig. 3. Manual surface partitions of the bladder, prostate, and rectum defining local
interior (a) and exterior (b) regions. For the bladder, prostate, and rectum we define
6, 3, and 4 interior regions, and 8, 5, and 8 exterior regions, respectively.

Table 2. Segmentation results using local image regions. The Gaussian appearance
model using the two local region methods is compared to the global region method.

Volume Overlap Ave. Surface Dist. (mm)
Appearance Model Bladder Prostate Rectum Bladder Prostate Rectum

Training 88.6% 87.8% 82.8% 1.11 1.05 1.15
Gaussian Global 84.8% 79.6% 72.1% 1.53 1.86 2.00
Gaussian Partition 83.0% 80.5% 72.1% 1.74 1.77 2.01
Gaussian Local 83.2% 80.5% 73.0% 1.67 1.78 1.95

region for each point by first finding the portion of the surface within a radius of
each point. Then, each region consists of all the voxels within a certain distance
to the boundary that have model-relative coordinates associated with the re-
gion’s corresponding surface patch. This approach can define overlapping image
regions at any scale and locality, and learning boundaries between local regions
is unnecessary.

For the bladder, prostate, and rectum we use 64, 34, and 58 boundary points,
respectively. Each region is set to a radius of 1.25 cm and the collar region is
kept at ± 1 cm, as in previous results.

4.3 Results

Table 2 gives segmentation results using the Gaussian appearance model from
section 2 for both local region approaches. The Partition method refers to the
approach described in section 4.1, and the Local method refers to the approach
described in section 4.2. Both methods use 25 histogram bins and Gaussian mod-
els restricted to 2 principal directions of variation. These results show that both
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the Local and Partition methods are roughly equivalent to the Global method.
However, there is a consistent improvement by the Local method in the segmen-
tation of the rectum.

5 Conclusions

In this paper we defined a novel multiscale appearance model for deformable ob-
jects. We have shown that our histogram based appearance model outperforms a
profile based appearance model for a segmentation task when only one training
image is available. We also described a method to statistically train histogram
variation when multiple training images are available and demonstrated its im-
proved segmentation accuracy. Finally, we considered regions at different scales
and showed that local image regions have some benefits over global regions,
especially for rectum segmentation.

6 Future Directions

We only present initial segmentation results in this paper. Our next step is to
validate these findings in a more comprehensive intra-patient study of the pelvic
region. Then, we plan to consider other anatomical objects including the kidneys.

In the pelvic region, gas and bone produce outlying CT values. When there
is a significant amount of these extreme values our mapping can produce unnat-
ural interpolations. Therefore, we will investigate a technique to identify these
intensities in advance and compute a separate estimate of their variation.

As described in [11], we plan to do a multiscale optimization. Such an ap-
proach could use the three region scales described in this paper. Furthermore, we
will use geometric models to describe soft instead of hard apertures. For exam-
ple, a voxel’s contribution to a measurement could be weighted by a Gaussian,
based on its distance to the object’s boundary. Using multiscale regions and
soft apertures should smooth the segmentation objective function, resulting in
a more robust optimization.

We desire a more principled approach considering tissue composition for
defining regions in the Partition method. We hope to characterize the inten-
sity distributions of particular tissue types, to estimate the tissue mixtures over
image regions using mixture modeling, and finally to optimize the regions for
maximum homogeneity. In addition, we may train on the model-relative position
of these regions, to help capture inter-object geometric statistics.

We only considered histograms of pixel intensities in this paper. We will
extend this framework to estimate the distribution of additional features, such
as texture filter responses or Markov Random Field estimates. Although the
EMD defines a distance measure between multi-dimensional distributions, we
plan to assume the independence of these features and then apply the same
techniques described in this paper.
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Abstract. In this paper we propose a novel type of scales-spaces which
is emerging from the family of inhomogeneous pseudodifferential equa-
tions (I − τ∆)

t
2 u = f with τ ≥ 0 and scale parameter t ≥ 0. Since

they are connected to the convolution semi-group of Bessel potentials
we call the associated operators {Rn

t,τ | 0 ≤ τ, t} either Bessel scale-space
(τ = 1), Rn

t for short, or scaled Bessel scale-space (τ 	= 1). This is the
first concrete example of a family of scale-spaces that is not originating
from a PDE of parabolic type and where the Fourier transforms F(Rn

t,τ )
do not have exponential form. These properties make them different
from other scale-spaces considered so far in the literature in this field.

In contrast to the α-scale-spaces the integral kernels for Rn
t,τ can be

given in explicit form for any t, τ ≥ 0 involving the modified Bessel
functions of third kind Kν . In theoretical investigations and numerical
experiments on 1D and 2D data we compare this new scale-space with
the classical Gaussian one.

Keywords: Bessel potential, Bessel-functions, α-scale-space, convolu-
tion, semi-group, pseudodifferential operator,co-histogram.

1 Introduction

In retrospect modern scale-space theory began with the pioneering work of Taizo
Iijima [17] in the late fifties. Although his work was not noticed by the western
scientific community for decades the vivid research on scale-space methodolo-
gies has resulted in a large amount of techniques valuable for image processing
and computer vision. This is documented in numerous articles and books, see
[12,31,21,29,33] and the literature cited therein.

The Gaussian scale-space is the archetype of a linear scale-space. Its rela-
tion to linear diffusion processes was first pointed out to the image processing
community by Iijima [18].

However, scale-space properties can also be spotted in non-linear diffusion
processes, a field inspired by the path-breaking work of Perona and Malik [26].
These non-linear theories embrace anisotropic diffusion processes [33,27], mor-
phological operations [32,6,19] as well as the evolution of level curves [2,24,28,20].

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 84–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Highly non-linear, sometimes even degenerated differential equations are the
mathematical language to describe these theories [31,33,15,3,13,8].

Be that as it may, the linear setting, meaning the assumed validity of the
superposition principle, and the exploration of underlying axiomatic theory was
and is an active field of research, [4,2,33,12,22,25,34] and [10].

In this linear setting the importance of the Gaussian scale-space cannot be
overestimated, although in recent years other concrete examples of linear scale-
space concepts have received considerable attention:

- First the Poisson scale-space arising from the Laplace equation in potential
theory has been introduced by Felsberg and Sommer [11] to image process-
ing. It allows an explicit analytical integral representation with the Poisson
kernel.

- After that the so-called α-scale-spaces with α ∈]0, 1] have been proposed as
the continuous link between the trivial (α = 0), the Poissonian (α = 1

2 ) and
the Gaussian (α = 1) scale-space. They are ruled by an pseudodifferential
equations, and unfortunately no exact integral representation formulas for
their solutions are known. See [10] for a very comprehensive exposition about
theory and history of this scale-space family.

- Very recently the relativistic scale-spaces [7] instigated by a Schroedinger
pseudodifferential equation from theoretical physics have been shown to
bridge the gap between Poisson (‘zero-mass-limit‘) and the trivial scale-
space (‘infinite-mass-limit‘). Explicit integral formulas involving kernels with
Bessel functions of the third kind have been given in [7].

All these examples have in common that they emanate from (pseudo-) differential
equations of parabolic type, such as the α−scale-spaces:

∂tu = −(−∆)αu

with initial condition u(x, 0) = f(x) .
The goal of this paper is to investigate the scale-space that arise from the

following inhomogeneous elliptic PDE involving arbitrary positive powers t ≥ 0
of the Laplacian and the identity operator I:

(I −∆)
t
2 :=

(
I −

n∑
i=1

∂2u

∂x2
i

) t
2

= f, (1)

with a suitable function f : IRn −→ IR .
The parameter t should be interpreted as a smoothing parameter: The appli-

cation of an partial differential operator to a function u roughens it. Intuitively,
if u is to fulfill (1) (even in the distributional sense) it must be smooth enough
to produce f , and the larger t is the smoother the function u has to be. Hence,
solving (1) for u means in effect calculating smoother versions of f .

However, equation (1) is not an evolution equation of parabolic type. Al-
though it is not done in this article, one has the opportunity to tackle this
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equation with the highly developed numerical methods for elliptic PDEs. Fur-
thermore, inhomogeneous PDEs might be the starting point for a fruitful nonlin-
ear and anisotropic theory, just as it was the case for the Gaussian scale-space.
We will examine the smoothing procedure ruled by (1), establish the associated
convolution semi-group properties by spectral methods. In contrast to the scale-
space examples mentioned above this semi-group is not of exponential type.

The associated integral representation kernels are explicitly known as Bessel
potentials, a generalisation of Riesz potentials. Hence, the properties of this
scale-space can be explored also with methods from real analysis.

The paper is structured as follows: In the following section we use the Fourier
transform a function f ∈ L2(IRn) given by

F(f)(k) =
∫

IRn

e−2πik·x f(x) dx .

to study (1). This will lead directly to the definition of the Bessel scale-space.
After a study of its properties we will also present scaled versions of the Bessel
scale-space. Experiments illustrating the potential and limitations of the novel
scale-spaces are described in Section 3. A summary and an outlook for ongoing
in Section 4 complete the paper.

2 Bessel Scale-Space

We recall that the action of the differential operator ∆ is multiplication by
− 4π|k|2, implying that (1) Fourier transforms into

(1 + 4π2|k|2) t
2 û = f̂ .

According to theory of spectral methods for PDEs this entails that formally the
solutions to (1) are computed via convolution with the integral kernel Gn(·, t)
which appears as the inverse Fourier transform of

F(Gn)(·, t) :=
1

(1 + 4π2|k|2) t
2
,

that is,

Gn(x, t) =
∫

IRn

1
(1 + 4π2|k|2) t

2
e2πik·(x−y) dk .

This integral can be evaluated in every dimension n yielding the known explicit
formula for the Bessel kernels [23,9]

Gn(x, t) =
1

√
π

n√2
n+t−2

Γ ( t
2 )

Kn−t
2

(|x|)

|x|n−t
2

,

Γ denotes the Gamma function and Kν stands for the modified Bessel function
of third kind with index ν.
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Fig. 1. Left: Comparison of the exponential and Bessel functions K0, K1 and K2.
Right: Examples of the Bessel kernel for n = 1 with t = 1.5, 3, 6.

The Bessel functions Kν can be evaluated via fast converging series expan-
sions and three-term recursive formulas. For more details see [1]. Figure 1 com-
pares the exponential function e−x with some Bessel functions. The Bessel func-
tions are exponentially decaying for large x.

Using formulas in [1] for Kν one can derive explicit expressions of Bessel
kernels for special values of t:

Gn(x, n + 1) :=
1

π
n
2 2nΓ (n+1

2 )
e− |x|,

which is a continuous function, not differentiable at x = 0, and

Gn(x, n + 3) :=
1

π
n
2 2n+1Γ (n+3

2 )
(1 + |x|) e− |x|,

which is in fact twice continuous differentiable in IRn.
This has an interesting effect: a merely continuous function convolved with

Gn(x, n + k) produces only a Ck−1-smoothed version. This behaviour is dif-
ferent from Gaussian, Poissonian, or relativistic scale-spaces, where the filtered
functions are even analytical for every scale parameter t > 0.

Figure 2 displays the Bessel kernel for various values of t and also its com-
parison with a Poisson and a Gaussian kernel.

For notational convenience we define the operator Rn
t on L2(IRn) via the

convolution

Rn
t f(x) := (Gn(·, t) ∗ f) (x) =

∫
IRn

Gn(x− y, t)f(y) dy . (2)
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Fig. 2. Left: Comparison between different kernels including Bessel (τ = 1), Gaussian,
and Poisson kernel in 1D centered at the origin with t = 3. Right: Comparison of the
asymptotic behaviour of the same kernels for large values of x (logarithmic scale on
y-axis).

2.1 Behaviour of Gn(·, t) in the Limit t ↓ 0

According to a theorem of P. Levi [5] stating the continuity of the (inverse)
Fourier transform the relation

F(Rn
t )(k) =

1
(1 + 4π|k|2) t

2
−→ 1 if t ↓ 0

confirms that Rn
t approximates the identity operator I in the distributional sense

if t is small. This can also be shown by methods from real analysis based on the
explicit knowledge of the Bessel potentials.

2.2 Semigroup Properties

From the theory of contraction semi-groups [16] we infer that the operator Rn
t

determines a contraction semi-group on L2(IRn) . Indeed, in view of Plancherel’s
theorem, it is enough to verify that the Fourier transforms F(Rn

t ) of the family
{Rn

t } satisfy the conditions

1. F(Rn
s+t)F(f) = F(R)n

sF(Rn
t )F(f) = F(Rn

t )F(Rn
s )F(f) for all s, t ≥ 0 ,

2. ‖F(Rn
t )F(f)−F(Rn

s )F(f)‖2 −→ 0 for t −→ s ,

3. F(Rn
0 ) = 1, expressing the fact that Rn

0 = I, the identity ,

4. ‖F(Rn
t )F(f)‖2 ≤ ‖F(f)‖2, the contraction property .

Due to the properties of the elementary functions 1
(
√

1+c)t with c > 0 it is not
difficult to check that the operator Rn

t indeed fulfills these conditions.
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2.3 Regularity

We define the Sobolev spaces Hs(IRn) as in [30] (with 2πk instead of k) by

Hs(IRn) :=
{
u ∈ L2(IRn) |

(
1 + 4π2|k|2

) s
2 F(u) ∈ L2(IRn)

}
for all functions in L2(IRn) and s ∈ IR.
Then it follows without difficulty that Rn

t increases the regularity:

Rn
t : Hs(IRn) −→ Hs+t(IRn)

In this sense the operator indeed produces smoother versions ũt = Rn
t f of a

given f ∈ L2(IRn). Summarising the analysis above we state

Proposition 2.1. 1. The families of operators {Rn
t | t ≥ 0} form an additive

semi-group for any fixed n ≥ 0.
2. For every t ≥ 0 the average grey-value is preserved under the action of Rn

t .
3. The operators Rn

t are translational invariant.

However, it is not difficult to see that the Bessel scale-space is not scale invariant.
As already indicated before, the scale parameter t plays also the role of a smooth-
ing parameter; roughly speaking, the smoothness is increased by t. This is not
the case for the standard linear scale spaces, where the smoothness of the filtered
signal immediately jumps to its highest level, analyticity.

2.4 Scaled Bessel Scale-Spaces

The following generalisation of the Bessel kernel is close at hand: we introduce
a scaling parameter τ ≥ 0 via

Gn
t,τ (x) := τnGn

t (τx).

Then we have
F(Gn

t,τ )(k) =
1

(1 + 4π2τ2|k|2) t
2
,

furthermore, all the properties of Gn
t mentioned above carry over, essentially

verbatim, to Gn
t,τ , including semi-group, contraction and limit properties. Rn

t,τ

denotes the corresponding convolution operator. For τ = 0 the operator degen-
erates to the identity, Rn

t,0 = I, while for τ = 1 we obtain the Bessel scale-space,
Rn

t,1 = Rn
t .

Numerical examples for these scaled versions of the Bessel scale-space are
presented in the following experimental section.

3 Numerical Experiments

In this section we display some results of numerical experiments to visualise the
properties of the Bessel and the scaled Bessel scale-spaces. We contrast the novel
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Bessel with the Gaussian scale-space. First we take a look at the Bessel and
Gaussian scale-space in 1D. The results are captured in a 3D-plot in Fig. 3. We
have chosen a signal with discontinuities to visualise the regularising properties of
theBessel scale-space. Thedifferences are not dramatic, especially since theweaker
regularity of the Bessel-filtered signals is not discernable from the analyticity of the
Gaussianfiltered results. In order to compare the effect ofGauss andBessel filtering
of 2D-images we utilised so-called co-histograms [14]. Co-histograms
hf,g(m,n) are 2D-histograms encoding the frequency of ordered pairs of grey values
(m,n) of an image pair (f, g). They are constructed via the formula

hf,g(k, l) =
1

MN

M∑
i=1

N∑
j=1

δ(fi,j , k) · δ(gi,j , l) ,

where δ stands for the Kronecker symbol and M × N is the size of the images
f, g. Figure 4 depicts the co-histogram as a grey value image. Differences in the
images f and g result in asymmetry of the co-histogram and its departure from
being diagonal. At the very beginning Gauss and Bessel filtering of the office
image without noise do not yet have a strong effect (t = 0.1), hence the diagonal
dominant form of the co-histogram. The appearance changes with increasing
scale t, furthermore, in the limit t →∞ the co-histogram will tend towards one
bright spot on the diagonal marking the average grey value common to both
filter processes. For larger times there is no visible difference in the ability of
removing (Gaussian) noise between the two scale-space concepts. Only for very
small times there is a discrepancy indicated by the spread of the corresponding
co-histogram (Fig. 4, middle column, second row).

The situation is different for a binary image (last column of Fig. 4); in this
case the co-histograms indicate a clearly discernable difference between the two
types of filtering throughout the evolution processes.

We remark that fixing the parameter t and using τ as parameter also leads
to a scale-space structure, referred to as the scaled Bessel scale-space in the
previous chapter. Fig. 5 contrasts a scaled version (right column) with the non-
scaled version of the Bessel scale-space. One may notice the convergence towards
the mean value for increasing values of t or τ , respectively.

4 Conclusion

The goal of this paper is to introduce the novel two-parameter family of Bessel
scale-spaces. In proposing this peculiar example we hope to convey our opinion
that not only parabolic (pseudo-)differential equations can serve as a birthplace
for scale-spaces. The underlying Bessel convolution semi-group turned out to
possess a non-exponential Fourier transform. The degree of smoothness of the
filtered data grows steadily (in terms of Sobolev exponents) for increasing scale
parameter t, in contrast to other common scale-spaces. Nevertheless, opposite
to the α-scale-spaces these new scale-spaces admit integral representations with
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Fig. 3. Bessel scale-space in 1D. Left column, top : Smoothing of a signal in Bessel
scale-space. Left column, middle : Smoothing of this signal in Gaussian scale-space.
Left column, bottom : Difference in signal evolution w.r.t. scale-spaces above. Note
that the scale on the z-axis has been stretched by the factor 7 in comparison with the
images above. Right column: The same with noisy signal (Gaussian noise added to the
original signal on the left).
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Fig. 4. Co-histograms: Comparison of Gaussian and Bessel scale-space in 2D. Top row:

Original images. Second row: Co-histograms comparing Gauss and Bessel filtering of
the corresponding images of the first row with t = 0.1. Third row: The same with
t = 10. Fourth row: The same with t = 100.
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Fig. 5. Comparing non-scaled and scaled Bessel scale-spaces in 2D. Left column: Non-
scaled Bessel scale-space, τ = 1. Left column, from top to bottom: t = 0, 10, 100, 1000.
Right column: Scaled Bessel scale-space, with fixed t = 100. Right column, from top to

bottom: τ = 0, 0.1, 1, 10.
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explicitly known kernels. They involve modified Bessel functions Kν of the third
kind and hence bear some resemblance to the relativistic scale-spaces.

Ongoing research on Bessel scale-spaces encompasses studies of variational
formulations, special features as well as non-linear extensions and their numerical
treatment.

Acknowledgements. We gratefully acknowledge partly funding by the Deut-
sche Forschungsgemeinschaft (DFG), project WE 2602/2-2.
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Abstract. Inner products of Sobolev type are extremely useful for im-
age reconstruction of images from a sparse set of α-scale space features.
The common (non)-linear reconstruction frameworks, follow an Euler La-
grange minimization. If the Lagrangian (prior) is a norm induced by an
inner product of a Hilbert space, this Euler Lagrange minimization boils
down to a simple orthogonal projection within the corresponding Hilbert
space. This basic observation has been overlooked in image analysis for
the cases where the Lagrangian equals a norm of Sobolev type, result-
ing in iterative (non-linear) numerical methods, where already an exact
solution with non-iterative linear algorithm is at hand. Therefore we
provide a general theory on linear image reconstructions and metameric
classes of images. By applying this theory we obtain visually more attrac-
tive reconstructions than the previously proposed linear methods and we
find connected curves in the metameric class of images, determined by a
fixed set of linear features, with a monotonic increase of smoothness. Al-
though the theory can be applied to any linear feature reconstruction or
principle component analysis, we mainly focus on reconstructions from
so-called topological features (such as top-points and grey-value flux) in
scale space, obtained from geometrical observations in the deep structure
of a scale space.

Keywords: Scale Space, Sobolev Spaces, Gelfand Triples, Tikhonov
Regularization, Top Point Reconstruction, Deep Structure, Flux Fea-
tures.

1 Introduction

In linear scale space theory one obtains a so-called α-scale space representation
uα

f : Rd × R+ → R of a grey value image image f ∈ L2(Rd) by means of a
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holomorphic semi group generated by −(−∆)α, 0 < α ≤ 1. Such a scale space
is obtained by means of a convolution

uα
f (x, s) = (Kα

s ∗ f)(x), s > 0,x ∈ Rd,

where Kα
s = F−1[ω 	→ e−s‖ω‖2α

]. These isotropic linear scale space representa-
tions follow from a list of fundamental axioms, cf.[1] and the most common cases
are α = 1 and α = 1

2 leading to respectively a diffusion system and α = 1/2 a
potential system on the upper space s > 0. In these cases the convolution kernel
equals respectively the Gaussian kernel and the Poisson kernel:

K1
s (x) =

1
(4πs)d/2

e−
‖x‖2

4s and K
1
2
s (x) =

2
σd+1

s

(s2 + ‖x‖2)
d+1
2

. (1)

In α-scale space one can use all kinds of differential invariants to detect local
structure such as corners and lines. These differential invariants Φ : C∞(Rd) →
C∞(Rd) are algebraic (not necessarily linear) combinations of so-called
α-derivatives of f ∈ L2(Rd), given by

Dn
s f := Dn(Kα

s ∗f) = (DnKα
s )∗f , s > 0, α ∈ (0, 1],n = (n1, . . . , nd) ∈ Nd,

(2)
such that they are Euclidean invariant, i.e. Φ ◦ Ug = Ug ◦ Φ, for all g within the
Euclidean motion group G = Rd �SO(d), where U : G 	→ B(L2(Rd)) is given by
Ugψ(x) = ψ(R−1(x− b)), g = (b, R) ∈ G.

Notice that the α-derivatives given by (2) are bounded (and thereby well-
posed) operators on L2(Rd), which is clearly not the case for the usual derivative
operators. This statement directly follows from the Plancherel Theorem and the
fact that ω 	→ ωpe−s|ω|2α

is uniformly bounded on R for all p ∈ N. In case d = 2 a
complete set of functionally independent differential invariants up to second or-
der is given by {u, u2

x+u2
y, uxx+uyy, uxxu

2
y−2uxyuxuy+uyyu

2
x, uxuyuxx−u2

xuxy+
u2

yuxy−uxuyuyy}. By introducing Gauge coordinates w, v, where w is along the
gradient of u = uα

f and v orthogonal to it, i.e. ew(x) = ∇xu
‖∇xu‖ and ev(x) = Rπ

2
ew,

these differential invariants are simply expressed as {u, uw, uww +uvv, uvv, uvw}.
Beyond Euclidean invariance, there is affine invariance. A differential invari-
ant Φ : C∞(Rd) → C∞(Rd) is called affine invariant if Ug Φ = ΦUg, for all
g ∈ Rd � A(d), where A(d) = {M ∈ GL(d) : detM = 1}. In the case d = 2, we
have that every element in A(2) is a composite of a rotation, shearing and an
axis-rescaling. The respective matrix representations of these linear mappings
are given by

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, Sc =

(
1 c
0 1

)
, Lλ =

(
λ 0
0 λ−1

)
, (3)

θ ∈ [0, 2π), c ∈ R and λ ∈ R. Consequently, a differential invariant which is
also invariant under (the left regular actions of) the subgroups {Sc | c ∈ R}
and {Lλ | λ ∈ R} is affine invariant. The affine invariants up to second or-
der are given by {u, detHx(u), (Rπ/2∇xu)THx(u)Rπ/2∇u} or equivalently in
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Gauge-coordinates {u, uvvuww − u2
vw, u2

wuvv}. With respect to affine invariants
on uα

f (·, s) it should be noticed that they do not correspond to affine features on
the original image f , since in general for g = (A,b) and uα

Ugf (·, s) = Ug uα
f (·, s)

holds for all f ∈ L2(R2) if and only if A is orthogonal.

In this article we focus on the question:
” Given a sparse set of linear scale space features can we obtain an approximate
reconstruction of the original image f in a fast operational and linear method ? ”.

A Euclidean invariant way of obtaining features from an image f is by means
of differential invariants (on uα

f ) as described above, but they are mostly non-
linear with respect to f . Therefore we select points where certain differential
invariants vanish and compute the n-th order jet at these points, where n equals
the order of the differential invariant, which are linear features of the type given
by equality (2), so-called α-derivatives. Notice to this end that this does not
affect Euclidean invariance of the reconstruction algorithm we will present.

It is a well known problem that the construction of f from uf(·, s) for any
s > 0 fixed is extremely ill-posed, as it requires an inverse convolution of the
low-pass filter Kα

s . By considering multiple orientations (leading to a so-called
orientation score) and proper directed wavelets one can get around this problem,
as is shown in [2], but here we will consider multiple scale representations rather
than multiple orientation representations of images. In theory an α-scale space
is analytic in (x, y, s), but again computing an image reconstruction by means
of Taylor expansion of (in)finite order from a single point in scale space is highly
ill-posed. Nevertheless, it is possible to give an approximate reconstruction of f
from a sparse set of linear features obtained by means of α-derivatives, which
should be considered as an interpolation rather than an inverse convolution. But
first we will study the topological structure of a scale space, also known as deep
structure, as it seems most reasonable that the features should at least capture
the topological structure of the scale space.

2 Deep Structure

The topological structure in a scale space and in particular the change of topo-
logical structure of u(·, s) over s > 0, reflects the hierarchical structure of objects
(like blobs) in an image. As the resolution increases extrema disappear until at
finite scale S > 0 only one extremum is left, cf.[3]. Points in scale space where a
saddle and extremum annihilate or points where an extremum and a saddle are
created are called top-points. The set of top-points is given by

{(x, s) | (detHxu(·, s))(x) = 0 and (∇xu(·, s))(x) = 0}.

Notice that in a top point all affine differential invariants vanish.1 At these
points the topological structure changes. Other interesting points in scale space
1 The other way around need not be true: uvvuw = 0 and detHu(·, s) = 0 is equivalent

to uw = det Hu(·, s) = 0 or uvv = uvw = 0. In the latter case the isophote curvature
and the flowline curvature vanish, i.e. the isophotes and flowlines are straight lines.
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are scale space saddles2, these are exactly those points were ∇x,su(x, s) = (0, 0),
cf. [4]. For investigation on the stability of top-points we refer to Balmachnova
et al.[5].

Another important geometrical quantity is the grey-value flow within an α
scale space uα

f of image f . This multi-scale vector field is given by

Fα[uα
f ](x, s) = (fαs ∗ f)(x), (4)

where fαs (x) = F−1[ω 	→ i 1
‖ω‖2(1−α) ω e−s‖ω‖2α

](x). To this end we notice that

∂

∂s
[uα

f ] = −(−∆)αuα
f = divFα[uf ],

which is easily verified in the Fourier domain: −‖ω‖2α = iω · i 1
‖ω‖2(1−α) ω. The

grey-value flow tells us how the grey-value particles flow within the scale space
representation and reveals the interaction between extremal paths in scale space.
We will use this flux vector field to compute so-called flux features. For the spe-
cial case of a Gaussian scale space α = 1 the grey-value flow is obtained by means
of the gradient as we have Fα=1[uf ](x, s) = ∇xuf(x, s) and fα=1

s = ∇xK
1
s (x).

For the special case of a Poisson scale space α = 1
2 the grey value flow is ob-

tained by means of the Riesz transform Fα= 1
2
[uf ](x, s) = Rxuf (x, s) and fα= 1

2
s

equals the vector-valued conjugate Poisson kernel: fα= 1
2

s (x) = RxK
1/2
s (x) =

2
σd+1

x

(s2+‖x‖2)
d+1
2

. By extending a scale space with its flow, one obtains a vector

scale space which equals the first order jet of a Gaussian scale space if α = 1
and which equals the monogenic scale space, cf.[6], if α = 1/2.

3 Linear Image Reconstruction Schemes

In this section we will generalize the standard linear reconstruction scheme from
the usual case where the space of images is modelled as L2(R2) to the more
general case of an arbitrary Hilbert space H . Later we consider the case where
H is a Hilbert space of Sobolev-type.

Let {ψ̃k}n
k=1 be a set of n continuous linear functionals (features) on a Hilbert

space H , which are linearly independent. Then by the Riesz representation the-
orem there exist unique {ψk}n

k=1 in H such that 〈ψ̃k, f〉 = (ψk, f)H , for all
f ∈ H . The values (ψk, f)H , k = 1, . . . , n are called features. Let V be the span
of {ψk}n

k=1. Two images f, g ∈ H have the same features iff f − g ∈ V ⊥. This
defines an equivalence relation on H and the equivalence classes are given by

[f ] = {g ∈ H | g ∼ f} = f + V ⊥ .

2 As is shown in [1], there do not exist interior extrema (with respect to scale and
position) in α-scale spaces.
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Theorem 1. Inside the metameric class of images, the unique element with
minimal H-norm equals the orthogonal projection of f onto V :

PV f =
n∑

k=1

(ψk, f)ψk, (5)

where the reciprocal base vectors are given by ψk =
n∑

l=1

Gklψl, where
n∑

k=1

GikGkj =

δi
j, with Gramm-matrix: G = [Gkj ] = [(ψk, ψj)H ].

Proof. By the Pythagoras theorem we have

min
g∈[f ]

‖g‖2 = min
g∈[f ]

‖g − PV f + PV f‖2 = min
g∈[f ]

‖g − PV f‖2 + ‖PV f‖2 (6)

and this equals ‖PV f‖2 only in the case g = PV f . Finally we notice that a
closed3 linear subspace of a Hilbert space is again a Hilbert space and thereby
the orthogonal projection is unique. �

The special case H = L2(R2) in Theorem 1, is a standard linear reconstruction
scheme in image analysis, see for example [7] and later [8], [9]. In image analy-
sis this reconstruction theory is usually put in a more indirect Euler-Lagrange
framework. For example in the work of Nielsen and Lillholm, cf. [7], [8], where it
is already mentioned that the prior need not be an L2-norm and that there exist
much better priors (in the sense that one clearly obtains visually more appealing
image reconstructions), such as minimal entropy and a first order Sobolev-norm.
But they were unaware of Theorem 1 and thereby they used iterative non-linear
schemes to approximate the global minimum. In case of a minimum entropy
based prior, which is not4 a norm induced by an inner product, this is plausible
(and probably the best you can get). However, in the case where the prior equals
a norm of Sobolev type the exact minimum is given by PV f . Lemma 1 shows
that if the prior is a norm on a Hilbert space this boils down to the same result
as in Theorem 1 (as it should).

Lemma 1. In the Euler Lagrange framework, the unique solution of the min-
imization of the convex positive energy E(g) = 1

2 (g, g)H , under the conditions
(ψi, g)H = ci ∈ C (fixed) for i = 1, . . . , n, where {ψi} are linearly independent
in H,satisfies

< DE(g), f >= (g, f) =
n∑

i=1

λi(ψi, f)H , for all f ∈ H (7)

and is given by the orthogonal projection g = PVf , given by (5), of the original
image f on the linear span V of the filters ψi.
3 A finite dimensional subspace is always closed, but this statement reveals how to

deal with the case n → ∞.
4 A norm on a vector space V is induced by an inner product iff the parallelogram law
‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) holds for all x,y ∈ V . In this case the inner
product is given by (x,y) = 1

4
‖x + y‖2 − ‖x − y‖2 + i‖x − iy‖2 − i‖x + iy‖2 .
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Proof. The uniqueness and last part of the proof is already given by Theorem
1. With respect to the first part we only mention that the Gateaux variation of
the energy at g in the direction of f is given by

< DE(g), f >= lim
λ→0

E(g + λf)− E(f)
λ

= (g, f), for all f ∈ H

and the Lagrange multipliers must be equal to λi = (ψi, g), where {ψi}n
i=1

denotes the reciprocal basis. �

Instead of iterative schemes we use directly compute the exact solution PV f , for
the cases (recall the example in section 4.1) where the Hilbert space H equals
a space of Sobolev-type, for example Hk,2

γ (R2) = {f ∈ L2(R2) | (Rf,Rf) =
(R2f, f) < ∞}, where R = (I + γ2k|∆|k)

1
2 , k = 1, 2, . . ., γ > 0, as explained in

Corollary 1. In the next chapter we will deal with some important theoretical
issues that inevitably arise when working with spaces of Sobolev type, but it
is not necessary to understand all details to understand the algorithm from a
practical point of view. At this point, if the reader is not interested in these more
theoretical aspects, we directly refer to Figures 2 and 1 and Corollaries 1, 2.

4 Gelfand Triples

Let H be a complex Hilbert space and R an unbounded, positive and selfadjoint
operator on H , for which the inverseR−1 is bounded. Note that the boundedness
of R−1 implies that the domain D(R) = {f ∈ H | Rf ∈ H} equals D(R) =
R−1(H).

Definition 1. Define the space HI as the linear space D(R) equipped with the
inner product (f, g)I = (Rf,Rg)H for all f, g ∈ H.

Notice that HI is again a Hilbert space: Let fn be a Cauchy sequence in HI .
Then Rfn is a Cauchy sequence in H . H is a Hilbert space, so Rfn → g in H ,
for some g ∈ H . But then, since R−1 is bounded, it follows that fn is also a
Cauchy sequence in H : ‖fn − fm‖ ≤ ‖R−1‖‖Rfn − Rfm‖. So fn → f in H ,
for some f ∈ H . Now R is self adjoint and therefore closed, so f ∈ D(R) and
Rf = g. Now we have Rfn →Rf in H , so fn → f in HI and f ∈ HI .

Definition 2. Define the Hilbert space H−I as the completion of H equipped
with the inner product (f, g)−I = (R−1f,R−1g)H.

The operator R on H induces the map R̃ : HI → H by R̃f = Rf for all
f ∈ HI = D(R). Since ‖R̃f‖H = ‖f‖I for all f ∈ HI , the map R̃ is an
isometry. By boundedness of R−1, it follows that R̃ is also surjective and hence
a unitary map.

Define Ř : D(R) → H−I by Řf = Rf for all f ∈ D(R). Since ‖Řf‖−I =
‖f‖H for all f ∈ D(R), the map Ř is closable and its extension is an isometry.
Since R(D(R)) = H and H is dense in H−I the closure is also surjective, hence
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a unitary map. Write ˜̃R for the closure of Ř. Hence the following triple (known
as Gelfand Triple) is obtained

HI R̃
↪→ H

˜̃R
↪→ H−I . (8)

It follows by the Riesz representation theorem and the unitarity of R̃ and ˜̃R
that the space H−I is naturally isomorphic to the anti-dual space of HI under
the pairing 〈F, f〉 = ( ˜̃R−1F, R̃f)H for all F ∈ H−I and f ∈ HI . Note that by
the selfadjoint-ness of R

〈F, f〉 = (F, f)H (9)

if F ∈ H for all f ∈ HI . In this paper R, R̃ and ˜̃R are all denoted by the same
symbol R. From the context it is clear which operator is meant by this symbol.

4.1 Spaces of Sobolev Type

By a Theorem of John von Neumann, [10]p.200, we have that for every closed
densely defined operator A in a Hilbert space H the operator A∗A is self adjoint
and (I + A∗A) has a bounded inverse. So a particular case of a Gelfand triple
is obtained by setting R = (I + A∗A)1/2, where A is a closed densely defined
operator. In that case we have

(f, g)I = (Rf,Rg)H = (f, g)H + (Af,Ag)H . (10)

Example 1: Let k ∈ N. Then it is well-known that the operator Dk = (1 +
γ2k|�|k)

1
2 with domain Hk,2

γ (R2) is an unbounded, positive and self-adjoint op-
erator on L2(R2) with bounded inverse. So A = γ(

√
−∆)k and R = Dk and we

obtain the Gelfand triple

Hk,2
γ (R2) ↪→ L2(R2) ↪→ H−k,2

γ (R2). (11)

For a detailed discussion on these spaces, in particular γ = 1, we refer to [10]I.10,
pp.56.

Remark: The Gelfand triple structure is interesting for the case that A is un-
bounded, since if A is bounded (and thereby R is bounded) we have by (10)
that :

‖f‖2
H ≤ ‖f‖2

I ≤ (1 + ‖A‖2)‖f‖2
H ,

so the norms (and the thereby induced topologies) are equivalent. Moreover, if
A is bounded the set D(R) equals H and the Riesz representant of f 	→ (φ, f)
in HI is given by R−2φ = (I +A∗A)−1φ:

(R−2φ, f)I = (R−1φ,Rf)H = (RR−1φ, f)H = (φ, f)H .

Summarizing, if A is bounded the sets HI and H are equal and by the Riesz
representation theorem H is unitary equivalent with its dual H ′, so operator A
only tells us how H is identified with H ′.
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4.2 Trajectory Spaces

In a Hilbert Space H we consider the general evolution equation du
ds = Au, with

A a negative unbounded self-adjoint operator. A is the infinitesimal generator of
a holomorphic semi-group. Solutions u(·) : (0,∞) → H of this equation are called
trajectories. Such a trajectory may or may not correspond to an ”initial condition
at s = 0” in H . The set of trajectories is considered as a space of generalized
functions. The test function space is defined to be SH,A =

⋃
s>0

esA(H).

Theorem 2. Let H be a Hilbert space. Let Q be a strongly continuous, holomor-
phic semigroup, with infinitesimal generator A < 0. Then SH,A consists exactly
of those f ∈ D(A∞) such that

∞∑
k=1

sk

k!
‖Akf‖ < ∞ for a certain s > 0 . (12)

This is a well-known result in functional analysis and its proof can for example
be found in [11] or [1]Appendix, Thm 11. Now by taking R = e−sA on H , with
bounded inverse esA we obtain the following Gelfand-triples:

SH,A
R
↪→ H

R
↪→ S′

H,A. (13)

Example: H = L2(Rd), A = ∆, then (R−1f) = K1
s ∗ f , where K1

s is the
Gaussian kernel, recall (1), and we obtain the Gelfand triple

S R
↪→ L2(Rd)

R
↪→ S′. (14)

where SL2(Rd),∆ = S = {φ ∈ C∞(Rd) | ∀k,q sup
x∈Rd

|xkφ(q)| < ∞} is the usual

Schwarz space.5

4.3 A Linear Image Reconstruction Based on Inner Products of
Sobolev Type

By taking the space of images HI (for example HI = H2k,2
γ (Rd) or HI =

SL2(R(d)),−(−∆)α) in Theorem 1 we obtain the metameric class

[f ] = {g ∈ HI | (κk, f)I = (κk, g)I , for k = 1, . . . , n} , with κk = R−2ψk, k = 1, . . . n,

and the optimal solution within this metameric class arg min
g∈[f ]

‖g‖2
HI , is given

by g = PV f . Notice that (κk, g)I = (ψk, g)L2(R2), so the metameric classes still
consist of images (within HI) with the same features. But initially, the space of
images was the modeled by H = L2(R2) space (and not the smooth space HI),
so we want our metameric classes within L2(R2) rather than HI . Theorem 3,
takes care of this.
5 In case of the Poisson semigroup (A = −√−∆) leads to the Gelfand-Shilov space
S1 rather than the Schwarz space, see [1].
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Theorem 3. Let f ∈ H. Let [f ] denote the metameric class of all elements
g ∈ H such that

g ∼ f ⇔ (R−1f,Rκk)I = (R−1g,Rκk)I , for all k = 1, . . . , n.

with κk ∈ HII , i.e. Rκk ∈ HI . Then the unique solution of the minimization

problem min
g∈HI ,g∼f

‖g‖I is given by g = P ext
V f =

n∑
i=1

(Rκi,R−1f)Iκi, with κi =
n∑

j=1

Gijκj, where
n∑

k=1

GikGkj = δi
j, with Gkj = (κk, κj)I .

Proof. First notice that P ext
V is the natural extension of PV , i.e. the restriction

of P ext
V to HI equals PV : P ext

V |HI = PV , which directly follows by the fact that
R is self adjoint and therefore

(Rψ,R−1f)I = (ψ, f)I for all f ∈ HI and ψ ∈ HII . (15)

Without loss of generality we may assume that {κk} is an orthonormal base in
HI . Then we have g − P ext

V f⊥P ext
V , since by f ∼ g and (15) it follows that

(g − P ext
V f, P ext

V )I = (Rκj ,R−1f)(g, κj)− (Rκj ,R−1f)(Rκj ,R−1f) = 0 .

So again Pythagoras: min
g∼f,g∈HI

‖g‖2
I = min

g∼f,g∈HI

‖g−Pext
V f+Pext

V f‖2
I = min

g∼f,g∈HI

‖g−

Pext
V f‖2

I + ‖Pext
V f‖2

I we conclude that this equals min
g∼f,g∈HI

‖g‖2
I = ‖Pext

V f‖2
I iff

g = Pext
V f �

By taking the respective pairs H = L2(Rd),R = (I+γ2k|∆|k)
1
2 and H = L2(Rd),

R = e
s
2 |∆|α in Theorem 3 we obtain the following corollaries:

Corollary 1. Let f ∈ L2(Rd). Let [f ] denote the equivalence class of all ele-
ments g ∈ L2(Rd) such that

g ∼ f ⇔ (ψk, f)L2(R2) = (ψk, g)L2(R2), for all k = 1, . . . , n.

Then the unique solution of the minimization problem

min
g∈H

k,2
γ (R2),g∼f

‖g‖2
H

k,2
γ (R2)

= min
g∈H

k,2
γ (R2),g∼f

(g, g)L2(R2) + (g, γ2k|∆|kg)L2(R2)

is given by g = P ext
V f , where P ext

V f = ((I+γ2k|∆|k)
1
2 κi, (I+γ2k|∆|k)−

1
2 f)

H
k,2
γ (R2)

κi,

where κk are the reciproke vectors of κk = (I + γ2k|∆|k)−1ψk.

Important: Notice that κk = Rk,γ
d=2 ∗ ψk, where Rk,γ,0

d=2 (x) = F−1(ω 	→ 1
2π (1 +

γ2k|ω|2k)−1)(x) is the reproducing kernel (at 0) of Hk,2
γ (R2), for k > 1, see

Appendix. The reproducing kernels are needed to project L2-linear onto linear
Sobolev-features, which is the basic reason for the succes of our approach to
feature reconstruction: The features themselves do not change, but the projection
basis is subject to a Tikhonov regularization. In this way ” the reconstructed
Lena gets rid of her smallpox ”, see fig 1.
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Corollary 2. Let f ∈ L2(Rd). Let [f ] denote the equivalence class of all ele-
ments g ∈ L2(Rd) such that

g ∼ f ⇔ (ψk, f)L2(R2) = (ψk, g)L2(R2), for all k = 1, . . . , n.

Then the unique solution of the minimization problem

min
g∈S

L2(R2),−|∆|α ,g∼f
(g, g)L2(R2) +

∞∑
k=1

(g, s2k|∆|αkg)L2(R2) (16)

is given by g = P ext
V f , where P ext

V f = (e
s
2 |∆|ακi, e−

s
2 |∆|αf)S

L2(R2),−|∆|α κi, where

κi are the reciproke vectors of κi =
(
e

s
2 |∆|α)−2

ψi = Kα
s/2 ∗Kα

s/2 ∗ψi = Kα
s ∗ ψi.

Fig. 1. Illustration of metameric class f +V ⊥ of images with equal features. For γ = 0
we have a orthogonal projection. For γ > 0 this projection is orthogonal in Hk,2

γ (R2)
and thereby it is a skew projection in L2(R2). We obtain a connected curve parametized
by γ where smoothness of the projection increases with γ > 0.

We are mainly interested in the case where the features are obtained by α-
derivatives within the scale space image u of the original image f , i.e. ψk(x) =
(τbk

DnkKα
sk

)(x) = DnkKα
sk

(x−bk) for some multi-index nk, some position bk ∈
Rd and some scale sk. In this case we can analytically compute the Grammian
matrix (and thereby analytically compute the solution g = P ext

V f):

Gkj = (κk, κj)S
L2(R2),−|∆|α = (R−2ψk,R−2ψj)S

L2(R2),−|∆|α = (R−1ψk,R−1ψj)L2(R2)

= (τbk
DnkKα

sk+(s/2), τbj Dnj Kα
sj+(s/2))L2(R2) = Kα

sj+sk+s

(nk+nj)

(bk − bj) .
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Important: Here again the features are preserved and the base functions are
smoothed. But now the smoothing kernels are given by the α-kernels themselves
rather than the reproducing kernels of the isotropic Sobolev-spaces in the pre-
vious corollary. So instead of Tikhonov-regularization we smooth according to
ordinary α-scale spaces. The relation between these 2 extreme ways of smoothing
is given by the Laplace transform with respect to the scale parameter

L[s 	→ Kα
s ](γ−2k) = γ2kRk,γ,0

d=2 for all γ > 0, where k = α. (17)

By interchanging the order of Laplace transformation and integration, it is not
difficult to obtain an analytic formula for the Grammian matrix in Corollary 1
(and thereby analytic formulas for the orthogonal projection) for the cases where
α = k.

Fig. 2. Reconstruction from 31 top-points of “Lena’s eye” with up to second order
features only. The upper row shows the original image and reconstructions with γ = 0
and γ = 5. The second row shows reconstructions with γ = 22, γ = 50 and γ = 250.
The first image in the second row shows the reconstruction with the lowest relative
L2-error. For more details on evaluation we refer to our earlier work,[12],[13].

5 Flux-Features

Besides the regularizing effect of minimizing Sobolev norms there is another
advantage of using Sobolev inner products: There exist several interesting fea-
tures (such as grey-value fluxes) of images which can be constructed by means of
Sobolev inner products, but which can not be constructed in the usual framework
of L2-inner products. For example point evaluation δa(f) = f(a) is a continuous
linear functional on Hk,2

γ (R2), k > 1. As a result (by the Riesz representation
Theorem) there exists reproducing kernels, see Appendix A, R2

k,γ ∈ Hk,2
γ (R2),

k > 1 such that δa(f) = f(a) = (τaR2
k,γ , f), which makes point evaluations

linear features. This can not be done within the more familiar L2(R2) space.
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Another example of new possible linear features are so-called flux-features on
images. They are given by the linear functionals

f 	→ IΩ(f) =
∫

∂Ω

∂f

∂n
dσ, f ∈ H2,2

γ (R2).

where Ω is a bounded region in R2, with surface measure µ(Ω) < ∞ with a ori-
entable piecewise smooth boundary ∂Ω with outward normaln. These linear func-
tionals are continuous on Hk,2

γ (R2) if k ≥ 2, which directly follows by Gauss di-
vergence theorem and Cauchy-Schwarz: |IΩ(f)| ≤

∣∣∫
Ω

∆fdx
∣∣ ≤ µ(Ω)‖f‖

H
2,2
γ (R2).

As a result there exist flux-kernels φΩ,k,γ in Hk,2
γ (R2), k ≥ 2, such that

IΩ(f) = (φΩ,k,γ , f)
H

k,2
γ (R2).

The Practical Reason for Flux Features: In the previous chapters we im-
proved the top-point reconstruction by introducing spaces of Sobolev-type. The
idea was to pick a smooth element within the metameric class of images with top-
points at the same locations as the locations of the top-points of the scale space
of the original image f , where a positive parameter controls the smoothness of
this reconstruction. By increasing this parameter (γ > 0 in Corollary 1 or s > 0
in Corollary 2) this representant becomes smoother and thereby the number of
extra top points of the scale space of this representant is reduced. Nevertheless,
in practice there exist an upper bound to the parameter γ, since if the repre-
sentant becomes too smooth, the contrasting areas (such as corners/edges) will
vanish, which results in so-called “edge-leaking“, cf.[12]. Therefore, we propose
to reduce the number of extra top-points in the representant by means of extra
features. Flux-features obtained by surfaces around critical paths in scale space
are highly suitable for this purpose, as they describe how grey-value particles
flow between extremal paths.

5.1 Definition and Implementation of Flux Features in Scale Space

Definition 3. Let s > 0, f ∈ L2(R2), with α-scale space representation uα
f =

Kα
s ∗ f . Let Ω be a bounded region in R2 with an orientable piecewise smooth

boundary ∂Ω with outward normal n. Then we define the flux feature Iα
Ω(f, s) =

∂
∂t

∫
Ω

uα
f (x, t)dx

∣∣∣∣
t=s

.

We notice that by means of Gauss’ divergence theorem and changing the order
of differentiation with respect to s > 0 and integration over Ω we can relate
flow-vector fields Fαuα

f (·, s), recall (4), to flux-features

Iα
Ω(f, s) =

∫
Ω

∂
∂su

α
f (x, s) dx =

∫
Ω

−(−∆)αuα
f (x, s) dx =

∫
Ω

divFα uα
f (x, s) dx

=
∫

∂Ω

Fα uα
f (x, s) · n(x) dσ(x),

(18)
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Recall that F1 equals the gradient operator F1 = ∇ and F 1
2

equals the Riesz
transform F 1

2
= R. So, in case α = 1 and in case α = 1/2 we have

I1
Ω(f, s) =

∫
∂Ω

∂u1
f (·,s)
∂n dσ(x) I

1/2
Ω (f, s) =

∫
∂Ω

q(x, s) · n(x) dσ(x), (19)

where q = f
1
2
s ∗ f denotes the conjugate Poisson scale space.

Grey-value flow of grey-value particles through surface ∂Ω̃ around an extremal
path in scale space

Definition 4. Let Ω̃ = {(x, s) ∈ R2 � [0,∞) | 0 ≤ s1 ≤ s ≤ s2,x ∈ Ωs ⊂
R2}, where for all s > 0, Ωs is a bounded region in R2, with an orientable
piecewise smooth boundary ∂Ω with outward normal n. Suppose the lifetime of
a grey-value particle through scale space is negatively exponentially distributed
with expectation µ−1. Then the grey-value flow trough Ω̃ is given by6

Iα,µ

Ω̃
(f) =

1
µ

s2∫
s1

Iα
Ω(f, s) e−µs ds. (20)

Notice that Ω̃ need not be equal to Ω × (s1, s2) as Ωs may vary in s > 0. By
straightforward computation and the Plancherel Theorem we have

Iα
Ω(f, s) = −((−∆)αuα

f (·, s), 1Ω)L2(R2) = −(ω �→ ‖ω‖2αûα
f (ω, s), 1Ω)L2(R2)

= (ω �→ 1√
1+(γ‖ω‖)2k

f̂(ω), ω �→ −‖ω‖2αe−s‖ω‖2α

√
1+(γ‖ω‖)2k

1Ω(ω))L2(R2 ; (1+γ‖ω‖2k) dω)

= (φα,s
Ω,k,γ , f)

H
k,2
γ (R2)

(21)
6 In case Ωs = Ω, i.e. Ωs does not change over scale, and s0 = 0 and s1 → ∞ we obtain

ψα,µ

Ω̃,k
= 1

µ
L[s �→ φα,s

Ωs,k](µ), where L denotes the well-known Laplace transform.
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with f ∈ L2(R2), α ∈ (0, 1] and flux-kernel φα,s
Ω,k,γ = F−1[φ̂α,s

Ω,k,γ ] = F−1[ω 	→
−‖ω‖2αe−s‖ω‖2α

√
1+(γ‖ω‖)2k

1̂Ω(ω)]. Notice that the substitution k = 0 in equality (21) yields

Iα
Ω(f, s) = (φα,s

Ω,0, f)L2(R2) only for s > 0. In case s = 0, where uα
f (·, 0) = f , we

may write Iα
Ω(f, 0) = (φα,0

Ω,k,γ , f)
H

k,2
γ (R2) for k ≥ 2. For k = 0 the inner product is

not defined. It now follows that Iα,µ

Ω̃
(f) = (ψα,µ

Ω̃,k
, f)

H
k,2
γ (R2), where the netto flux

kernel needed to compute Iα,µ

Ω̃
(f) is simply given by ψα,µ

Ω̃,k
= 1

µ

s1∫
s0

φα,s
Ωs,ke

−µ sds.

Finally we notice that φα,0
Ωs,k,γ = κk ∗ φα,s

Ω,0, where the flux-kernel φα,s
Ωs,0 is given

by

φα,s
Ωs,0 =

∂

∂s
Kα

s ∗ 1Ω = (divFαKα
s ) ∗ 1Ωs . (22)

The case where Ωs equals an ellips: In case of the disk Ωs = B0,a there
are two reasonable options, either the flux kernel is evaluated via the Fourier
domain, which yields:

φα,s
B0,a,0(x) = −a

∞∫
0

ρ2αJ1

(
ρ
a

)
J0(ρ r)e−sρ2α

dρ, r = ‖x‖,

where we notice that F1Ω(ω) =
a J1( ρ

a )
ρ , ‖ω‖ = ρ, or by means of (18), (19). In

case α = 1 we get

φ1,s
Ω,0(y)=

∫
∂Ω

∂K1
s (x−y)
∂r dσx

=a
2π∫
0

{
cosφ

(
y1−a cos φ

8πs2

)
+ sinφ

(
y2−a sin φ

8πs2

) }
e

−(a cos φ−y1)2−(a sin φ−y2)2

4s dφ,

which is easily numerically approximated. Finally, we notice that the ellips-case
Ωs = Eθ(s),λ(s),a(s) = {x ∈ R2 | ‖L−1

λ(s)R
−1
θ(s)x‖2 = (a(s))2}, θ(s) ∈ [0, 2π), λ(s) >

0, a(s) > 0, recall (3), directly follows from the disk case by means of

φα,s
Ωs=Eθ(s),λ(s),a(s) ,k

(x) = φα,s
B0,a,k(L−1

λ(s)R
−1
θ(s)x), x ∈ Rd, s > 0.

6 Conclusion

The common (non)-linear reconstruction frameworks follow an Euler Lagrange
minimization. If the Lagrangian (prior) is a norm induced by an inner product of
a Hilbert space this Euler Lagrange minimization boils down to a simple orthog-
onal projection within the corresponding Hilbert space. This basic observation
has been overlooked in image analysis for the cases where the Lagrangian equals
a norm of Sobolev type resulting in iterative (non-linear) numerical methods,
where we provide exact solutions. By means of Gelfand triples we consider two
extreme cases (standard isotropic Sobolev spaces) and trajectory spaces. Al-
though the reconstruction algorithm is slightly simpler for the trajectory space
case, best results are obtained by minimizing isotropic Sobolev norms of low
order, taking into account that in both cases smoothness of the reconstruction
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is tuned by a positive parameter. In our opinion a linear reconstruction should
at least capture the topology (deep structure) of the scale space of the original
image. Therefore we only consider linear features inspired by the deep structure
of images. Besides top-points, the well-known scale space singularities, we in-
troduce the concept of flux-features. They describe the transport of grey-value
particles between extremal paths that lead to singular points in scale space. By
including these features we provide another tool to minimize spurious top-points
in the reconstruction image.
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A The Reproducing Kernels R2
k,γ of the Sobolev Spaces

Hk,2
γ (R2), k > 1.

In this section we compute the reproducing kernels R2
k,γ of the Sobolev spaces

Hk,2
γ (R2), k > 1. They are needed in our reconstruction algorithms to relate L2-

features to the Sobolev features on Hk,2
γ (R2), k > 1. Due to numerical limitations

(sampling) the cases which are most practically relevant are k = 0, 1, 2, 3, 4. The
(isotropic) functions x 	→ R2

k,γ(x), which are illustrated in figure 3 , are bounded
iff k > 1, which coincides with the fact that Hk,2

γ (R2) is a functional Hilbert space
iff k > 1.
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Fig. 3. Plots of the graphs of the functions ‖x‖ �→ R2
k,γ(x), for k = 1, 2, 3, 4

Theorem 4. The space Hk,2
γ (Rd) is a reproducing kernel space iff k > d/2. The

reproducing kernel (i.e. the Riesz-representant of the continuous point evalua-
tion, F (a) = (Rd

γ,k,a, F )
H

k,2
γ (Rd)) is then given by

Rd
γ,k,a(x) = 1

2πγ2kF−1(ω 	→ eiω·a 1
γ−2k+‖ω‖2k )(x)

= r−
d−2
2 1

2π

∞∫
0

ρ
d
2 J d−2

2
(ρr) 1

1+γ2kρ2k dρ ,
(23)

where r = ‖x− a‖ > 0, ρ = ‖ω‖ and satisfies the following recursion: Rd
γ,2k,a =

1
2

(
Rd

e
iπ
4k γ,k,a

+ Rd

e
−iπ
4k γ,k,a

)
. In case 7 d = 2 we have Rd=2

γ,k,a(x)

= 1
2πγ2 G

k+1,0
0,2k

(
ρ2k

γ2k kk | ak

)
, where ak = {akj}2k

j=1 ∈ Q2k is given by akj = j−1
k

for 1 ≤ j ≤ k, ak(k+1) = k−1
k and akj = ak(j−k−1) for k + 2 ≤ j ≤ 2k.

In particular we have Rd=2
γ,k=1,a(x)= 1

2πγ2 K0

(
r
γ

)
and Rd=2

γ,k=2,a(x)=− 1
2πγ2 kei0(r/γ),

with r = ‖x− a‖

7 Where we notice that Jµ is a Bessel function (first kind) of order µ and K0 equals
the well-known BesselK-function of order 0 and the Kelvin function kei0(v) =
1
2i

K0 e
+iπ
4 v − K0 e

−iπ
4 v and Gk+1,0

0,2k denotes a Meyer-G function.
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Abstract. In this paper, we present a novel framework to carry out
computations on tensors, i.e. symmetric positive definite matrices. We
endow the space of tensors with an affine-invariant Riemannian metric,
which leads to strong theoretical properties: The space of positive definite
symmetric matrices is replaced by a regular and geodesically complete
manifold without boundaries. Thus, tensors with non-positive eigenval-
ues are at an infinite distance of any positive definite matrix. Moreover,
the tools of differential geometry apply and we generalize to tensors nu-
merous algorithms that were reserved to vector spaces. The application
of this framework to the processing of diffusion tensor images shows
very promising results. We apply this framework to the processing of
structure tensor images and show that it could help to extract low-level
features thanks to the affine-invariance of our metric. However, the same
affine-invariance causes the whole framework to be noise sensitive and
we believe that the choice of a more adapted metric could significantly
improve the robustness of the result.

1 Introduction

Symmetric positive definite matrices, or tensors, are widely used in image pro-
cessing. They can either characterize the diffusion of water molecules as in dif-
fusion tensor imaging (DTI) [1], or reveal structural information of an image
(structure tensor) [2,3]. In this last application, tensors are used to detect sin-
gularities such as edges or corners in images. The structure tensor is classically
obtained by a Gaussian smoothing of the tensor product of the gradient, or with
a non-linear filtering as in [4], thus being naturally robust to noise. However,
noisy images require a large amount of regularization to obtain a smooth struc-
ture tensor field in order to avoid being overwhelmed by outliers in features
detection. By contrast, too much smoothing would completely wipe out small
structures in images. To address this problem, one would prefer to preserve small
structures in images by estimating structure tensors with a little smoothing and
to regularize the noisy tensor field itself. This implies to be able to filter tensor
images, and more generally to carry out computations with tensors.

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 112–123, 2005.
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Working with tensors is arduous since the underlying space is a manifold
that is not a vector space. While convex operations remain stable on the tensor
space (e.g. the mean of a set of tensors is a tensor), one can quickly go out of
the Euclidean boundaries with non-convex operations like a gradient descent.
A critical consequence is that matrices with null or negative eigenvalues may
appear and are problematic for most applications.

In this paper, we propose to apply a recently proposed Riemannian frame-
work for tensors to the processing of structure tensor images. The limitations of
the standard Euclidean calculus are completely overcome and the tensor space
is replaced by a manifold with a regular structure. We show that it leads to very
strong theoretical properties, such as the existence and uniqueness of the mean,
and that most of the statistical tools as well as the algorithms that were until
now reserved to vector space can be extended to tensors. The rest of the paper
is organized as follows. In Sec. 2 we summarize the Riemannian framework for
tensors. In Sec. 3, we extend the computations of classical image processing op-
erators to tensors as well as more complex operations and we provide intrinsic
numerical schemes for their implementation. In Sec. 4, we apply these tools on a
structure tensor image. In particular, we perform an anisotropic smoothing and
discuss about the potentiality of the method on this type of tensors.

2 A Riemannian Framework for Tensor Calculus

Much of the literature addresses tensor computing problems in the context of
DTI regularization. In DTI, the Brownian motion of water is estimated by a MRI
scanner at each position of the brain. This stochastic motion is characterized by
its covariance matrix, which is called a diffusion tensor. Depending on the amount
and direction of water diffusion, the tensor can be either cigar-shaped (region
where the diffusion is restricted by oriented tissues ), or a sphere (regions with
free diffusion). As the MRI signal is corrupted with noise during acquisition, the
resulting tensor field has to be filtered. To do so, the spectral decomposition of
tensors is often exploited: [5] only processes the major eigenvector (eigenvector
corresponding to the largest eigenvalue), leading to simple computations but a
dramatical loss of information, while [6] independently regularizes the orthogonal
matrices of eigenvectors and the eigenvalues. As the spectral decomposition is not
unique, a preprocess step, where the eigenvectors are reoriented, is needed and is
not trivial. More recently, differential geometric approaches have been developed
to generalize the PCA to tensor data [7], for statistical segmentation of tensor
images [8], for computing a geometric mean and an intrinsic anisotropy index [9],
or as the basis of a full framework for Riemannian tensor calculus [10]. In this last
work, we endow the space of tensors with an affine-invariant Riemannian metric
to obtain results that are independent of the choice of the spatial coordinate
system. Differential geometry tools allow to manipulate tensors while insuring
the positive definiteness of the result. In this section, we present an overview of
the affine-invariant metric for tensors.
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2.1 An Affine-Invariant Riemannian Metric

We showed in [11] that choosing a Riemannian metric provides a powerful frame-
work to generalize statistics and other operations to manifolds. We applied this
concept to tensors and showed in [10] that it leads to interesting properties such
as the existence and uniqueness of the (geometric) mean or the existence and
uniqueness of the geodesic between two tensors. A complete description of the
features of this framework can be found in [10] and is summarized below.

Let Σ be a point of the tensor space Sym∗
+(n). The action of the linear group

GLn on Sym∗
+(n) is:

∀A ∈ GLn, A � Σ = AΣAT

Let us consider the standard matrix scalar product at the tangent space at
identity TId

M :
〈W1|W2〉Id

def
= Tr

(
W1W

T
2

)
,

where W1 and W2 are elements of TId
M . As tangent spaces are vectorial spaces,

W1 and W2 are called tangent vectors. They are simple symmetric matrix since
the tensor space is a manifold included in the space of symmetric matrices
Sym(n).
An affine-invariant metric must verify: < W1|W2 >Σ=< A � W1|A � W2 >A�Σ

for all A ∈ GLn. This is verified in particular for A = Σ−1/2, which allows us to
write the scalar product at any point Σ from the product at TId

M :

〈W1|W2〉Σ =
〈
Σ− 1

2 � W1|Σ− 1
2 � W2

〉
Id

(1)

= Tr
(
Σ− 1

2 W1Σ
−1W2Σ

− 1
2

)
(2)

Eq. 1 is an affine-invariant Riemannian metric. Actually, we only need the
invariance by the linear group to obtain an affine-invariance since the translation
is not taken into account in our applications (tensors are independent of their
position on a grid).

As a general property on Riemannian manifolds, geodesics realize a local
diffeomorphism, called the exponential map, from the tangent space at any point
Σ to the manifold itself. This allows us to locally identify points of the manifold
with tangent vectors. With the invariant metric of Eq. 1, we can show that
this diffeomorphism is moreover global and is simply expressed with the matrix
exponential:

∀W ∈ TΣM, expΣ(W ) = Σ
1
2 exp

(
Σ− 1

2 WΣ− 1
2

)
Σ

1
2 (3)

expΣ(W ) can be seen as the point of the manifold reached by the geodesic
starting at Σ, with tangent vector W in a unit time step. Conversely, we can
uniquely define the inverse mapping, the logarithmic map:

logΣ(Λ) = Σ
1
2 log

(
Σ− 1

2 ΛΣ− 1
2

)
Σ

1
2 . (4)
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M
γ

0
Σ

Σ

Λ

T  M

ΣΛ

Fig. 1. Development of the geodesic γ linking Σ to Λ onto the tangent space TΣM .
The geodesics starting at Σ are straight lines in TΣM and the distance along them is
conserved.

These diffeomorphisms turn any two points Σ and Λ of the manifold into the
tangent vector

−→
ΣΛ such that the geodesic starting at Σ and with tangent vector−→

ΣΛ reaches the point Λ in a unit step (Fig. 1).
These two diffeomorphisms are the key to the numerical implementation and

generalization to manifolds of numerous algorithms that work on a vector space.
Table 1 summarizes the basic operations of vector spaces and their Riemannian
counterparts.

Geodesic marching: An important operator for solving partial differential equa-
tions (PDEs) is the gradient descent. It consists in following the opposite direc-
tion of the gradient of a criterion C we want to minimize for a short time step
ε. In the tensor case, the Euclidean gradient descent scheme Σt+1 = Σt − ε∇C
could easily lead out of the boundaries of the space and non-positive matrices
may appear. The Euclidean scheme is advantageously replaced by the geodesic
marching scheme: we follow the geodesic starting at Σt, with tangent vector
−∇C for a short time step: Σt+1 = expΣt

(−ε∇C). The exponential map in-
sures that we always stay on the manifold: the result is guaranteed to be positive
definite.

Table 1. Re-interpretation of the basic operations of vector spaces to Riemannian
manifolds

Operation Vector space Riemannian manifold
Subtraction

−→
ΣΛ = Λ − Σ

−→
ΣΛ = logΣ(Λ)

Addition Λ = Σ +
−→
ΣΛ Λ = expΣ(

−→
ΣΛ)

Distance dist(Σ,Λ) = ‖−→ΣΛ‖ dist(Σ,Λ) = ‖−→ΣΛ‖Σ

Mean value i

−−→
Σ̄Σi = 0 i logΣ̄(Σi) = 0

Gradient descent Σt+ε = Σt − ε∇C(Σt) Σt+ε = expΣt
(−ε∇C(Σt))

Linear (geodesic) interpolation Σ(t) = Σ1 + t
−−−→
Σ1Σ2 Σ(t) = expΣ1

(t
−−−→
Σ1Σ2)
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In conclusion, the Riemannian framework gives a powerful alternative to the
standard Euclidean calculus: classical operators are easily translated to tensors
thanks to the combination of the logarithm and exponential maps and complex
algorithms can be rewritten using these two diffeomorphisms. In the next sec-
tion, we show that the classical image processing operators like gradient and
Laplacian can be adapted to the Riemannian framework without much effort.
More interestingly, we are able to achieve complex operations like anisotropic
filtering directly on tensors, which was not possible with the standard Euclidean
calculus.

3 Applications

In this section, we reinterpret various image processing operators in the Rie-
mannian framework. First, we rewrite two classical operators of image processing
(gradient and Laplacian) to tensor images, and second we describe more complex
operations like multi-linear interpolation and anisotropic filtering.

3.1 Classical Image Processing Operators

In the following, we show that the gradient and Laplacian of a tensor field are
easily expressed in our exponential chart, and we provide a practical numerical
implementation of both operators.

Spatial Gradient of a Tensor Field. Basically, for a n-dimensional vec-
tor field F (x) defined over Rd, the spatial gradient in an orthonormal basis
is: ∇F = [∂x1F, . . . , ∂xd

F ]T , where ∂xiF is the directional derivative of F
in the direction xi. It can be approximated using a finite difference scheme:
∂xiF (x) = (F (x + xi)− F (x− xi)) /(2‖xi‖).

For a tensor-valued image Σ(x), we can proceed similarly except that the
directional derivatives ∂xiΣ are now tangent vectors of TΣ(x)M . They can be
approximated like above using finite differences in our exponential chart:

∂xiΣ(x) �
(−−−−−−−−−−→
Σ(x)Σ(x + xi)−

−−−−−−−−−−→
Σ(x)Σ(x− xi)

)
/(2‖xi‖)

=
(
logΣ(x) (Σ(x + xi))− logΣ(x) (Σ(x− xi))

)
/(2‖xi‖).

One must be careful to take the metric at point Σ(x) into account when com-
puting the norm of the gradient: ‖∇Σ(x)‖2

Σ(x) =
∑d

i=1 ‖∂xiΣ(x)‖2
Σ(x). Fig. 2

shows the difference between the Euclidean and Riemannian gradients. The Eu-
clidean gradient (Fig. 2 middle) gives much more importance to tensors with
large coefficients, and consequently its norm has higher values along the bound-
aries with the ventricles (a region characterized by large tensors), and lower
values elsewhere. By contrast, the affine-invariant metric (Fig. 2 right) gives as
much importance to variations of small tensors as to variations of large matrices.
Consequently, the norm the Riemannian gradient is more regular.



A Riemannian Framework for the Processing of Tensor-Valued Images 117

Fig. 2. Comparison of the norm of the Euclidean and Riemannian gradients of a ten-
sor image. Left: A slice of a DTI tensor image. The color codes for the major eigen-
vectors of tensors: Red: left-right oriented tensor, blue: inferior-superior oriented ten-
sor, green: posterior-anterior oriented tensor. Middle: Norm of the Euclidean gradient.
Right: Norm of the Riemannian gradient. Remark how the Riemannian norm is more
regular than the Euclidean norm.

Laplacian of a Tensor Field. For the numerical implementation of the Lapla-
cian, one needs the second order derivatives. As for the gradient, we use the
finite difference scheme to approximate the 2nd order derivative on a discrete
grid: ∂2

xi
F (x) � (F (x + xi)− 2F (x) + F (x− xi)/‖xi‖2.

We proved in [10] that :

∂2
xi

Σ(x) =
(−−−−−−−−−−→
Σ(x)Σ(x + xi) +

−−−−−−−−−−→
Σ(x)Σ(x − xi)

)
/‖xi‖2

is a forth order approximation of the 2nd order directional derivative of Σ(x) in
the direction xi. Finally, the manifold Laplacian (Laplace-Beltrami operator) of
a tensor field is simply: ∆Σ(x) =

∑d
i=1 ∂2

xi
Σ(x).

3.2 Interpolation and Filtering of Tensor Fields

Interpolation. Interpolation is one of the most important task in image pro-
cessing. A simple operation is the interpolation between two tensors Σ1 and Σ2.
The classical Euclidean calculus gives us the formulation: Σ(t) = (1−t)Σ1+tΣ2.
With our Riemannian framework, it consists in following the geodesic joining the
two tensors: Σ(t) = expΣ1

(t
−−−−→
Σ1Σ2).

For multi-linear interpolation, e.g. bi or trilinear interpolation on a regular 2D
or 3D grid, the formulation is not trivial. One has to go through the computation
of a weighted mean with classical bi- or trilinear coefficients calculated on a grid.
With the standard Euclidean framework, the weighted mean of a set of tensors
is: Σ = (

∑N
i=1 ωiΣi)/

∑N
i=1 ωi. In our Riemannian framework, one needs to go

back to the Frechet definition of the mean, i.e. the minimum (if it exists) of the
square distance to each tensor:
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Σ̄ = min
Σ

N∑
i=1

dist2 (Σ,Σi)

In the case of the tensor space provided with the affine-invariant metric, the
manifold has a non-positive curvature, so that the mean exists and is unique.
However, because of the curvature, the Frechet formulation does not have an
explicit solution. Instead, one has to minimize it through a Newton gradient
descent and the estimation of the mean at time t + 1 is given by:

Σ̄t+1 = expΣ̄t

(∑N
i=1 ωi logΣ̄t

(Σi)∑N
i=1 ωi

)
which consists in expressing each tensor in the tangent space at the current
estimation of the mean with the logarithmic map, then going back to the mani-
fold with the exponential map, and to reiterate the process. The existence and
uniqueness of the mean guarantees the process to converge. In practice, the con-
vergence of the iterative process is geometric and the mean value is reached
after 5 to 10 iterations. In [10], we propose an extension of several statistical
operations to tensors.

Anisotropic Filtering. In practice, we would like to filter a tensor image within
homogeneous regions but not across the boundaries. The basic idea introduced
by [12] is to penalize the smoothing in the directions where the magnitude of
the gradient is high. This can be achieved through the minimization of the φ-
functional:

C(Σ) =
1
2

∫
Ω

φ
(
‖∇Σ(x)‖Σ(x)

)
dx. (5)

By choosing an adequate φ-function, one can give to the regularization an
isotropic or anisotropic behavior [13]. In our experiments, we use φ(s) =
2
√

1 + s2/κ2 − 2, as proposed in [5]. The main difference with a classical Eu-
clidean calculation is that we have to take the curvature into account by using
the Laplace-Beltrami operator, and by expressing directional derivatives in the
correct tangent space. After differentiation of Eq. 5, one obtains :

∇C(Σ) = −
φ(‖∇Σ‖Σ(x))
‖∇Σ‖Σ(x)

∆Σ −
d∑

i=1

∂xiφ(‖∇Σ‖Σ(x))∂xiΣ

Thanks to the numerical scheme of the gradient and Laplacian operators (Sec.
3.1 ) combined with the geodesic marching, we are able to perform a gradient
descent to minimize criterion (5):

Σt+1(x) = expΣt(x) (−ε∇C (Σt(x))) (6)

Fig. 3 shows the effect of the anisotropic regularization on a slice of DTI. The
parameters for the regularization are: κ = 0.05, ε = 0.1 and 100 iterations (total
diffusion time: 10). The boundaries with the ventricles are conserved while the
interior is correctly regularized. Moreover, at the top of the ventricles lies a fiber
tract delimited with cigar-shaped tensors, which are also very well preserved.
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Fig. 3. Anisotropic regularization of a slice of DTI. Parameters: κ = 0.05, ε = 0.1,
iterations: 100 (diffusion time = 10). Left: Raw data. Right: Anisotropic filtering in the
Riemannian framework. The boundary of the ventricles (region with large tensors) is
well preserved. Remark that the left-right oriented tensors (in red) that are delineating
a fiber tract are also conserved. The color code is the same as in Fig. 2.

4 Applications to Structure Tensor Images

The structure tensor has become a useful tool for the analysis of features in
images. It is used in edges and corners detection [2], texture analysis [14,15],
filtering [16], and even medical image registration [17]. We show in this section
how to apply our previously presented Riemannian framework to process struc-
ture tensor-valued images. In particular, we perform an anisotropic smoothing
of the structure tensor field to enhance it, which could improve the quality of
features detection.

4.1 The Structure Tensor

Let I be an image defined on a domain of Rd. The structure tensor is based
on the gradient of I: ∇I = (∂1I, . . . , ∂d)

T , where each directional derivative ∂iI
can be computed with a finite difference scheme or by filtering with a first order
derivative of a Gaussian. The structure tensor Sσ can be defined as:

Sσ = Gσ ∗
(
∇I∇IT

)
with Gσ being a Gaussian of standard deviation σ. The variance σ controls the
smoothness of the resulting tensor field. The noisier the image is, the higher σ
must be to obtain a smooth field, but small structures may be wiped out. By
contrast, smaller values of σ can help to extract low level features in images, but
the resulting structure tensor image may be noisy. Consequently, one would like
to perform an anisotropic filtering of the structure tensor field obtained with a
low σ, in order to regularize homogeneous regions while preserving the bound-
aries with low-level features. In the following, we first compute the Riemannian
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Fig. 4. Euclidean gradient versus Riemannian gradient. Top row: Original image (left),
norm of the Euclidean (middle) and Riemannian (right) gradients. Bottom row: Noisy
image (a Gaussian noise of variance 0.01 was added) (left), norm of the Euclidean
(middle) and Riemannian (right) gradients.

gradient of a structure tensor image and compare it to the classical Euclidean
gradient. Then, we perform an anisotropic filtering and discuss about the results.

4.2 Gradient of a Structure Tensor Image

Following the numerical scheme of Sec. 3.1, we computed the gradient norm of
a structure tensor image obtained with a σ of 1.0 (Fig. 4 left is the original
image). Then, we compared it to the Euclidean gradient. We also added noise
in the original image to evaluate the robustness of both gradients. Results of
comparisons are shown in Fig. 4.

First, we can notice that with the affine-invariant metric, outliers appear
in the image background (Fig. 4 top right). This is intensified when adding
noise (Fig. 4 bottom right): we see that the background is made with artefacts
due to variations of small tensors that result from noise. Indeed, small tensors
have as much importance as large ones because of the affine-invariance of the
metric. Consequently, the Riemannian gradient of a variation of small tensors
or large tensors will be identical. By contrast, the Euclidean gradient remains
much less sensitive to tensors with small coefficients, and consequently only the
main features are revealed (Fig. 4 bottom right and left).
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Fig. 5. Anisotropic filtering of a noisy structure tensor image. Diffusion parameters:
κ = 0.02, ε = 0.1 and 500 iterations. Top row: From left to right: Original Euclidean
gradient, Euclidean gradient with noise, Euclidean gradient after regularization. Bot-
tom row: From left to right: Original Riemannian gradient, Riemannian gradient with
noise, Riemannian gradient after regularization.

Second, details that are not present in the Euclidean norm appear in the
Riemannian gradient: this is the case, for example, of low-contrasted edges in
the original image. This also results from the affine-invariance of the metric.

To conclude, the Riemannian framework can reveal lower structural infor-
mation such as low contrasted edges but is highly sensitive to small variation in
the tensor image, and thus suffers from a lack of robustness.

Let us now investigate how the anisotropic filtering scheme can restore the
noisy structure tensor image.

4.3 Anisotropic Filtering of a Structure Tensor Image

We applied the anisotropic filtering scheme of Sec. 3.2 on the noisy structure
tensor image of Fig. 4 bottom left. We used the following parameters: κ = 0.02,
ε = 0.1 and 500 iterations (total diffusion time: 50). Results are presented in
Fig. 5.

The affine-invariance causes the variations of small tensors to be highly con-
trasted in the norm of the Riemannian gradient and thus to be preserved during
the filtering process. Figures 5 bottom illustrate this behavior: the top of the
original noisy image (middle image) is filled with artefacts that were preserved
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during the smoothing (right image). Taking the Euclidean norm (Fig. 5 top
right) removes the artefacts in the image background. Homogeneous regions are
smoother while edges are correctly conserved. However, some artefacts in the
background that were expected to disappear are still present and the strength
of most of the relevant edges is lower than in the affine-invariant case.

In conclusion, the affine-invariant metric that is well suited for DTI, or more
generally for covariance matrices, seems not to be applicable directly to structure
tensor images. The affine-invariance gives an identical role to small tensors versus
large ones. Thus, while it allows to extract low-level features, it suffers from a
lack of robustness.

However, the Riemannian framework we present in this paper is "parame-
terized” by the metric. The choice of the metric is crucial and determines the
properties of the framework. The affine-invariance does not seem to be the best
choice for structure tensor images, but a more adapted metric could significantly
improve the results.

5 Discussion

We present in this paper a full Riemannian framework with an affine-invariant
metric that allows to perform computations on tensors while insuring the re-
sult to be positive definite, which is often a critical issue as in DTI. While this
framework is perfectly adapted to the processing of tensors representing covari-
ance matrices, the affine-invariant metric does not appear to be the best suited
choice for the processing of structure tensor images. In this case, the limitation
comes from the affine-invariance which gives an identical influence to small and
large tensors. Thus, an anisotropic smoothing will preserve the artefacts that are
caused by variations of small tensors composing homogeneous regions. Beyond
this limitation, the goal of this paper is to show that the choice of a Riemannian
metric leads to a powerful framework which allows to extend classical vector
space algorithms to manifolds thanks to the tools of differential geometry. One
interesting track would be to specify what are the basic axioms that the structure
tensor needs to satisfy and to derive the corresponding metric.
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Abstract. Several image processing algorithms imitate the lateral in-
teraction of neurons in the visual striate cortex V1 to account for the
correlations along contours and lines. Here we focus on two methodolo-
gies: tensor voting by Guy and Medioni, and stochastic completion fields
by Mumford, Williams and Jacobs. The objective of this article is to com-
pare these two methods and to place them into a common mathematical
framework. As a consequence we obtain a sound stochastic foundation of
tensor voting, a new tensor voting field, and an analytic approximation
of the stochastic completion kernel.

1 Introduction

Blurring an image has the benefit of reducing noise and smoothing the data. The
major negative side effect is the loss of image features at lower scale. To maintain
contours and lines, one can resort to anisotropic or directed diffusion [7,8]. Here
one applies an anisotropic or directed diffusion kernel on isotropic image features
like luminosity. The methodologies tensor voting [1,2] and stochastic completion
fields [3,12,4] go one step further. They apply directed diffusion to directed image
features.

Tensor voting and stochastic completion fields operate in different spaces, on
different objects, with different diffusion kernels. Our objective is to find the
relations between these mathematical constructs and to compare the open as
well as the hidden assumptions of both methodologies in 2D. We begin with
the mathematical description of directed features in the theory of stochastic
completion fields. Here the directed features are points in an orientation bun-
dle. We then explain how tensors of tensor voting relate to a subspace of the
Fourier transformed orientation bundle. In the subsequent section we derive
the Fokker-Planck equation of the stochastic completion kernel relying only on
simple stochastic considerations and on symmetry requirements, and give an
approximate analytic solution for the stochastic completion kernel. Utilizing the
relation between tensor fields and orientation bundles, we convert the analytic
solution of the stochastic completion kernel into the corresponding tensor voting
field. A comparison of this new tensor voting field with the original voting field
postulated by Guy and Medioni will demonstrate the differences between the
two methodologies.

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 124–134, 2005.
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2 Orientation Bundles of Directed Receptive Fields

Image features like edges, lines, contours and patterns are usually extracted from
a 2 dimensional image f(x) via linear filters ψ(x), which model the receptive
fields in biological visual systems. To ensure invariance under Euclidean trans-
formations (translations and rotations), these filters have to be applied at all
locations in an image domain Ω and in all orientations. This leads to the follow-
ing convolution that renders a response function WΨ in a 3 dimensional space,
the orientation bundle 1 of translations b and rotations α.

WΨ [f(x)](α,b) =
∫
Ω

Ψ
(
R−1

α (b− x)
)
f(x) dx . (1)

where R−1
α denotes the rotation matrix in 2 dimensions. The difference between

a regular convolution and equation (1) is the kernel rotation in addition to the
kernel translation. We therefore address the transformation properties of Ψ(x)
under rotation and turn to polar coordinates r and φ to facilitate the matter.
Note, that a Fourier transformation in φ decomposes the linear kernel2 Ψ̃(r, φ)
into steerable components ψ̃m(r)eimφ.

Ψ̃(r, φ) =
∞∑

m=−∞
ψ̃m(r) ei m φ , (2)

with ψ̃m(r) :=
1
2π

π∫
−π

Ψ̃(r, φ) e−i m φ dφ .

These m-modes ψ̃m(r) are the components of Ψ̃(r, φ) in irreducible, rotation-
invariant subspaces. Hence, a rotation of Ψ̃(r, φ) by α is achieved by multiplying
each m-component with a complex phases e−i m α.

Ψ
(
R−1

α x
)

= Ψ̃(r, φ− α) =
∞∑

m=−∞
ψ̃m(r) ei m (φ−α) =

∞∑
m=−∞

e−i m α ψ̃m(r) ei m φ.

The decomposition (2) of the kernel Ψ helps to rewrite equation (1) as an ordi-
nary convolution.

WΨ [f(x)] (α,b) =
∞∑

m=−∞
e−imα

∫
Ω

Ψm(b− x) f(x)dx . (3)

With an edge or line detecting kernel Ψ(x) we can now generate an orientation
bundle from any image. The best known example is probably the convolution
1 The correct mathematical term should be the function space on the orientation

bundle. Points, or rather δ-functions in the orientation bundle are positions with a
direction in the original image. For invertible orientation bundles, see [9].

2 We distinguish functions in polar coordinates and their counter parts in cartesian
coordinates by a ’˜’. Hence, Ψ̃(r, φ) := Ψ(r cos φ, r sin φ).
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with the x and y-component of a Gaussian gradient filter. This example triggers
two remarks. Equation (3) is only beneficial, if one may truncate the sum at
practical lower and upper bounds for m. However, why consider an orientation
bundle with an extra α-dimension, if just a few m-modes may contain all the
necessary information? The latter objection brings us to the representation of
oriented features by tensors of rank 2.

3 Tensors

The decomposition of kernels that rotate like vectors gives rise to two com-
ponents: Ψx(x) = (Ψ1(x) + i Ψ−1(x))/2 and Ψy(x) = i(Ψ1(x) − i Ψ−1(x))/2. A
Gaussian Hessian filter ΨA(a), a typical line or ridge detector, rotates like a sym-
metric 2 × 2-matrix. The response A(b) =

∫
ΨA(b − x)f(x)dx of such a filter

has the same rotational properties and decomposes into three m-modes A−2, A0

and A2.A−2

A0

A2

 =

1 −2i −1
1 0 1
1 2i −1

 ·

Axx

Axy

Ayy

 , where A =
(
Axx Axy

Axy Ayy

)
, (4)

which again simplifies rotations tremendously.

Rα

(
Axx Axy

Axy Ayy

)
RT

α ⇐⇒

e−2i α A−2

A0

e2i α A2

 (5)

Medioni and Guy consider only signals of directed receptive fields or filter
kernels that rotate like symmetric, semi-positive definite 2 × 2-matrices A (or
2-rank tensors). These matrices can be interpreted as ellipses (or ellipsoids in
3D) as depicted in figure 1. The eigenvectors of A constitute the major axes

Fig. 1. shows the ellipse that represents a symmetric, semi-positive definite 2×2-matrix
(or tensor of rank 2). e1 and e2 denote the two eigenvectors of the matrix. λ1 and λ2

are the eigenvalues. b is the ballness measure and s = λ1 − λ2 is giving the stickness.
Angle α is the orientation of the ellipse with respect to the x̂-axis.
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of the ellipse and the positive eigenvalues λ1,2 determine the length of these
axes. In tensor voting the isotropic portion of the ellipse is called ballness and
the anisotropic remainder stickness. The direction of the major axis α is the
direction of the stickness.

The characteristics of matrix A are determined by

λ1,2 =
1
2

tr(A)±
√

1
4

tr2(A) − det (A)

α = arccos(ê1 · x̂) = arg(Axx −Ayy + 2iAxy) ,

and the notions of tensor voting are given by

ballness b := λ2 ,

stickness s := λ1 − λ2 .

These tensor voting characteristics are easily expressed in m-modes.

ballness b :=
1
2

(
A0 −

√
A−2 A2

)
(6)

stickness s :=
√

A−2 A2 (7)

stickness angle α :=
1
2

arg(A2) (8)

Obviously, traditional tensor voting only considers modes with |m| = 2 and
m = 0. These modes relate to the stickness and ballness measures and can be
obtained from an orientation bundle WΨA by performing a Fourier transforma-
tion in α.

Transformation of orientation bundle WΨA into tensor A:

Am(b) =
1
2π

π∫
−π

eimαWΨA [f(x)] (α,b) dα . (9)

Vice versa, one can utilize equation (3) to generate an orientation bundle from
tensor field A(b).

Transformation of tensor A into orientation bundle WΨA :

WΨA [f(x)] (α,b) =
∑

m=−2,0,2

e−imα Am(b) . (10)

Now, that we can convert tensors into orientation bundles and back, we are all
set to proceed to the oriented diffusion process.

4 Casting a Stochastic Vote

The purpose of stochastic completion fields and tensor voting is the distribution
of directional edge and line measurements along the axis of their orientation to
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fill or bridge gaps in contours and lines due to sparse data, noise, or occlusion.
Stochastic completion fields rely on an elaborate diffusion kernel that acts on an
orientation bundle and diffuses measurements WΨ [f(x)] (α,b) in and along α.
The diffusion kernel is derived from a stochastic model of line or edge extrapo-
lation, hence the name. In tensor voting one imitates the diffusion process via a
voting field, that casts tensor-votes around each stick or ball-measurement.

We compare these two methods by first deriving the stochastic completion
kernel and an analytic approximation thereof. Given the analytic approximation
we will generate the corresponding tensor voting field and compare Medioni’s
ad hoc fundamental voting field with the stochastic version. We thereby gain
a direct comparison between stochastic completion kernels and tensor voting
fields.

Both, tensor voting and stochastic completion fields are based on the as-
sumption, that directed image features are due to edges, contours or lines in
the underlying image. Starting point is therefore a model that generates the
trajectories of edges, contours or lines.

The process of extending a line or contour is not a deterministic but a stochas-
tic process in the state space of line-/edge-segments. Mandatory properties of
line-/edge-segments are position and direction. Optional properties are scale or
curvature. We limit our focus on the mandatory line-features that are already
present in the orientation bundle: position vector b and direction α. Assuming
that the process of drawing a line or contour is independent of the line-/contour-
history we end up with a Markov process in the orientation bundle. The general
form of such a stochastic process is

∂t

(
b(t)
α(t)

)
= a(b(t), α(t)) + B(b(t), α(t)) · η(t) . (11)

The trajectory (b(t), α(t)) in position and direction is parameterized by drawing
time t. The vector-valued function a(b(t), α(t)) is the drift term that describes
the deterministic part of the line evolution. Matrix-valued function B(b(t), α(t)))
binds the random vector-variable η(t) to the process, determining the coupling
and correlation of the process to a source of uncorrelated noise of mean 0, which
models the randomness in line propagation.

Due to the randomness involved, it is appropriate to investigate the proba-
bilistic measure p(b, α, t|b0, α0, t0) of the trajectory, which denotes the prob-
ability of finding a line segment at time t in position b with orientation α
given that at time t0 the line was going through or started at position b0 in
direction α0. Stochastic calculus[10] enables us to transcribe the Markov pro-
cess (11) into the corresponding Fokker-Planck equation (12), a partial differen-
tial equation for p(b, α, t|b0, α0, t0) with initial condition p(b, α, t0|b0, α0, t0) =
δ(b− b0) δ(α− α0), Dirichlet boundary condition in b and periodic boundaries
in α.

∂t p(b, α, t|b0, α0, t0) = L(b(t), α(t)) p(b, α, t|b0 , α0, t0) , (12)
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with the differential operator L(b(t), α(t)) given by

L(b(t), α(t)) = −
∑

j={x,y,α}
∂j [a(b(t), α(t))]j p(b, α, t|b0, α0, t0)

+
1
2

∑
j,k={x,y,α}

∂j∂k

B(b(t), α(t)) ·BT (b(t), α(t))︸ ︷︷ ︸
D(b(t),α(t))


j k

p(b, α, t|b0, α0, t0) .

The first sum of L(b(t), α(t)) moves the probability distribution according to
the deterministic drift term a(b(t), α(t)). The second sum is the diffusion term
with diffusion tensor D(b(t), α(t)), which is due to the random pertubations by
η(t).

Furthermore, we add a killing term −λ p(b, α, t|b0, α0, t0) to L(b(t), α(t)), to
model the chance that a line terminates. Again, if the probability of termination
is line history independent, the line decay needs to be exponential, which is
ensured by decay constant λ.

∂t p(b, α, t|b0, α0, t0) = L(b(t), α(t)) p(b, α, t|b0 , α0, t0)− λ p(b, α, t|b0, α0, t0) ,
(13)

The differential time-translation operator eτ∂t takes the probability
p(b, α, t|b0, α0, t0) at time t and renders p(b, α, t+τ |b0, α0, t0) at a later time t+
τ . According to (13) we can substitute L(b(t), α(t))−λ I into the time-translation
operator and obtain

p(b, α, t + τ |b0, α0, t0) = eτ(L(b(t),α(t))−λI) p(b, α, t|b0, α0, t0) . (14)

We are not interested in the drawing process as such, but in the result, the
drawn line or contour. Hence, we need to integrate over time t. The Green’s
operator G =

∫∞
0 eτ(L(b(t),α(t))−λI)dτ will consequently generate the marginal

p(b, α) :=
∫∞

t0
p(b, α, τ |b0, α0, t0)dτ , the drawn line, given the initial probability

distribution at time t0.

G =

∞∫
0

eτ(L−λI)dτ = (L − λI)−1 eτ(L−λI)
∣∣∣∞
0

= −(L − λI)−1 . (15)

Instead of applying G to the initial probability δ(b− b0) δ(α− α0), we use G−1

as a constraint to solve for p(b, α)

G−1 p(b, α) = −(L− λI) p(b, α) = δ(b− b0) δ(α− α0) . (16)

Operator L is a function of drift and diffusion terms a(b(t), α(t)) and D(b(t),
α(t)). We can obtain specific drift and diffusion functions by demanding invari-
ance under translation and shift-twist-transformation in the orientation bun-
dle. These transformations are the analog of translation and rotation in the
underlying image. We ensure the invariance under translation and shift-twist-
transformation by requiring operator L to commute with the infinitesimal gener-
ators of translation Tb = ∂b and the shift-twist operation Sα = −x∂y+y ∂x+∂α.
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Setting the commutation relations3 [L, Tb] and [L,Sα] to 0 results in a set of
ordinary differential equations for a(b(t), α(t)) and D(b(t), α(t)). The solutions
depend on 9 constants a‖, a⊥, and aα, as well as D‖‖, D⊥⊥, Dαα, D‖⊥, D‖α,
D⊥α and have the form

ax(α(t)) = a‖ cos(α(t)) − a⊥ sin(α(t))
ay(α(t)) = a⊥ cos(α(t)) + a‖ sin(α(t))
aα(α(t)) = aα

Dxx(α(t)) =
1
2
(D‖‖ + D⊥⊥) +

1
2
(D‖‖ −D⊥⊥) cos(2α(t)) −D‖⊥ sin(2α(t))

Dyy(α(t)) =
1
2
(D‖‖ + D⊥⊥) +

1
2
(D⊥⊥ −D‖‖) cos(2α(t)) + D‖⊥ sin(2α(t))

Dxy(α(t)) = D‖⊥ cos(2α(t)) +
1
2
(D‖‖ −D⊥⊥) sin(2α(t))

Dxα(α(t)) = D‖α cos(α(t)) −D⊥α sin(α(t))
Dyα(α(t)) = D⊥α cos(α(t)) + D‖α sin(α(t))
Dαα(α(t)) = Dαα .

Not all constant values are admissible, meaningful, or of any consequence to
the line model. The velocity with which the stochastic line or contour is drawn
does not change its appearance. The norm of xy-projection of the drift term
can therefor be set to unit speed.

√
a2
‖ + a2

⊥ =
√

a2
x + a2

y = 1 reduces the set of
parameters by one. The ratio between a‖ and a⊥ determines the initial direction
of the line with respect to α. Contours and edges progress orthogonally to their
α-aligned gradient, so that a‖ = 0 and a⊥ = 1. Lines, however, with their major
eigenvector of the Hessian aligned along α, comply with a‖ = 1 and a⊥ = 0. An
angular drift aα makes the line turn. The resulting curvature of the line is κ =
aα/
√

a2
x + a2

y. Since we do not consider curvature in our model, we assume κ = 0.
To ensure a smooth line, one may only introduce noise to the line direction α,
not to the line-position, which would only blur it. Thus, only Dαα =: σ2 may be
unequal 0, and we finally arrive, with these few assumptions, at the stochastic
process considered by Jacobs, Thornber, Zweck, and Wang [4,5,6] in the theory
of completion fields.

∂tp = (L−λI) p , where (L−λI) = − cosα∂x− sinα ∂y +
σ2

2
∂2

α−λ . (17)

One can solve equation (17) with several numerical methods, which unfortu-
nately are ill-suited for comparison with tensor voting, where we have an analytic
formula for the voting field. To circumvent this difficulty we consider an approx-
imation. First we rewrite (17) in cylindric coordinates r = |b|, φ = ∠(b), and α.

(L − λI) = − cos (α− φ) ∂r −
sin (α− φ)

r
∂φ +

σ2

2
∂2

α − λ . (18)

3 [A,B] := AB − BA.
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The initial line or contour propagation starts with φ = α and it is thus safe to
assume, that |α−φ| is small within a certain vicinity, so that we can approximate
cos (α− φ) by 1 and sin (α− φ) by (α − φ). For |α| ≪ π we can also relax the
periodic boundary conditions and treat them as Dirichlet boundary conditions
at infinity. Then, inspired by [3] we obtain an analytic solution for the Green’s
function, good enough for most practical purposes.

Stochastic voting field in an orientation bundle:

p(r, φ, α) =
√

3
π (σr)2

e−λ r− (2α−3φ)2+3φ2

2σ2r . (19)

The versatility of this diffusion kernel in an orientation bundle has been shown
in the applications of stochastic completion fields and the benefits of the above
analytic solution will be the subject of a forthcoming article. Here we show the
relation between (19) and the fundamental tensor voting field.

5 Voting with Tensors

With Green’s function p(r, φ, α) we can cast scalar votes to the surrounding of
a line response in an orientation bundle. Medioni et al circumvent the construct
of an orientation bundle by casting not scalar but tensorial votes directly in an
image. Inspired by Gestalt laws, they assume that contours or lines run along
circular trajectories of constant curvature (see figure 2), that the probability
for a line decreases proportional to e−s2/σ̃2

with s denoting the length of the
line, and that lines with large curvatures κ are suppressed likewise by e−c κ2/σ̃2

.
Hence, in cylindric coordinates the resulting weight of a cocircular tensor vote
casted by a tensor with stickness α aligned along φ = 0 is

pTV (r, φ, ) ∝ e−
s2+cκ2

σ2 , where s =
φ

2
r csc

φ

2
and κ =

2
r

sin
φ

2
. (20)

For the normalization of pTV (r, φ) and for the comparison with the stochas-
tic completion kernel we consider the same linear approximation as applied to
equation (18). Thus, for small |φ| we can write s = r and κ = φ/r. In this
approximation the normalized, fundamental tensor voting field is

Fundamental tensor voting field approximation:

pTV (r, φ) =
√

c√
π σ̃ r

e
− 1

σ2 r2+c(φ
r )2

e4i φ , (21)

where we added e4i φ to encode the direction α = 2φ of the tensorial vote in
the complex phase according to (8), so that equation (21) displays the (m = 2)-
mode of the tensor field. Hence, stickness is |pS,TV (r, φ)| and the stickness angle
is given by arg (pS,TV (r, φ)). .
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Fig. 2. shows the cocircular line model of tensor voting. A tensor aligned along the x-
axis at the origin casts a vote at position r and polar angle φ. The orientation α of the
tensorial vote is determined by the circular line segment that is uniquely determined
by the origin, the alignment of the original tensor along-x and voting position r. The
weight of the vote depends on the curvature κ = 1/R and the length of the circular
line segment s.

6 Not all Voting Systems Are Created Equal

To relate the tensor voting field pTV (r, φ) and the stochastic completion ker-
nel p(r, φ, α), we have to bring the latter from the orientation bundle into the
image plane. To do so, we take an initial stick-tensor response, convert it to
an orientation bundle with (10), apply the stochastic completion kernel (19)
and bring the result back via equation (9). However, with this straight forward
approach we overlook a hidden step in the tensor voting methodology. Even
though stick-tensors exhibit an angular response of e±2iα, the tensor voting field
is only applied along a single α-direction, the direction of maximum response.
This amounts to an angular thinning process in the orientation bundle of the
initial stick-tensor, which will render just two delta spike at α and α + π. So
we only have to apply the stochastic completion kernel (19) onto the initial re-
sponse (δ(α)+ δ(α−π))δ(b) and convert the result to a tensor field via (9). The
stochastic version of a tensor voting field in its (m = 2)-mode is
Stochastic tensor voting field approximation:

pS(r, φ) =

∞∫
−∞

p(r, φ, α) e2i α dα =

√
3

2π r3σ2
e−

3φ2

2rσ2 − rσ2
2 e−λ r e3iφ . (22)
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One can observe three differences between the stochastic and the tensor vot-
ing kernel. In radius r the decay rate is e−λr for pS and e−r2/σ̃2

for pTV . The
angular width of the stochastic kernel grows with

√
r, whereas the width of

the tensor voting kernel increases with r. And finally, the stochastic trajectories
are not cocircular. α is 3φ/2 and not 2φ as required by Medioni’s model. Both
kernels are displayed in figure 3.

Fig. 3. The left shows a density plot of the stochastic completion kernel pS(r, φ) for
σ = 1/2 and λ = 2 in the range of r from 0 to 1. The tensor voting kernel pTV (r, φ)
is depicted on the right with σ̃ = 1/2 and c = 1/2. Note that the tensor voting kernel
widens more than the stochastic counter part. Each kernel is superimposed by of set
of trajectories along α = 2φ/3 on the left and α = 2φ on the right side.

As a last remark we like to point out that the stochastic completion ker-
nel p(r, φ, α) and the tensor voting fields pTV (r, φ) and pS(r, φ) can be decom-
posed into m-modes to facilitate their rotation in φ [11]. In the case of the
stochastic tensor voting field we obtain

pS(r, φ) =
∞∑

m=−∞

1
2π r

e−λ re−
σ2r
6 ((m−3)2+3) ei m φ . (23)

A truncation of the sum of m-modes amounts to a relaxation of the angular
thinning process in α. Having some control over the angular thinning process
may even be considered beneficial and has the advantage of a steerable voting
field.

7 Conclusion

We have shown the relation between stochastic completion fields and the tensor
voting paradigm. Starting with an arbitrary Markov process for the evolution
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of lines and edges, we have show that only a limited number of constants de-
termine a shift-twist invariant stochastic process in an orientation bundle. The
stochastic completion field falls into this category. We have given an analytic
approximation for the Green’s function of the stochastic process. Projecting the
(m = 2)-mode of the analytic Green’s function into the image plane, we gener-
ated the stochastic version of a tensor voting field. A comparison between the
conventional tensor voting field and the stochastic version has shown, that the
cocircular line model may be inappropriate. It leads to less directed voting fields.
This difference may only have a small practical impact, but we have given tensor
voting a mathematical underpinning based on stochastic assumptions.
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Abstract. The geometry of “empty” scale space is investigated. By
virtue of the proposed geometric axioms the generating PDE, the linear
isotropic heat equation, can be presented in covariant, or geometrical
form. The postulate of a metric for scale space cannot be upheld, as
it is incompatible with the generating equation. Two familiar instances
of scale spaces consistent with the geometric axioms are considered by
way of example, viz. classical, homogeneous scale space, and foveal scale
space.
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1 Introduction

It is well-known that a Gaussian scale space representation of a static image f
is generated by the isotropic heat equation [1]:

∂u

∂t
= ∆u (x; t) ∈ IRn × IR+ . (1)

Under very mild conditions this PDE admits a closed-form solution, u(x; t) =
(f ∗φt)(x; t). The Green’s function φt is a normalized Gaussian of width σ =

√
2t.

The solution is unique and smooth with respect to (x; t) ∈ IRn × IR+, and
analytical with respect to x ∈ IRn for each t ∈ IR+ [2].

The term “deep structure” (proposed by Koenderink in his seminal paper
[1]) has been introduced to distinguish genuinely multi-scale image descriptions
from conventional descriptions in which spatial methods are applied scale-wise
(“superficial structure”). Existing approaches towards the investigation of deep
structure are almost invariably of a topological nature, based on Morse theory
and singularity or catastrophe theory specifically adapted to be applicable to
the solutions of the heat equation, cf. the work by Koenderink, Damon, Florack,
and Kuijper [3,4,5,6,7,8]. Here I propose to investigate deep structure from a
geometric vantage point. This is a relatively unexplored research direction.
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Eberly was one of the first to address the issue of geometry of “empty” scale
space, i.e. the geometry of the (x, t)-domain regardless of the particular image
realization, by postulating a Riemannian structure [9,10], cf. the appendix for a
summary. This type of geometry is problematic, however. One conceptual prob-
lem is that the metric proposed by Eberly is not unambiguously defined, as
it depends on an essentially arbitrary constant ρ > 0. As a result, distances in
scale space are essentially arbitrary as well, and one might wonder why one would
want to introduce a distance concept in the first place. Although one could fix the
value of ρ once and for all in a heuristic, task dependent way, cf. Van Wijk and
Nuij’s application [11], a more serious conceptual problem remains: If scale space
were indeed a metric space, the PDE of Eq. (1) should admit a covariant formu-
lation in terms of covariant derivatives (or affine connection) compatible with
the metric. (Compatibility entails that the metric should be “covariantly con-
stant”. Details and proofs can be found in Misner, Thorne and Wheeler [12].) Put
differently, it should be possible to reformulate Eq. (1) in a geometrically mean-
ingful way. No such formulation exists, however [12]. Heuristically this can be
appreciated by noticing that the Laplace-Beltrami operator (i.e. the Laplacean
in a general metric space) induced by any (nonsingular) metric always involves
second order scale derivatives, which do not occur in the generating equation.

Below I propose a scale space geometry compatible with Eq. (1). The analogy
with heat diffusion suggests a parallel with classical spacetime, with time and
scale formally identified. Classical spacetime has been studied from a geometrical
point of view by Cartan [13], but not until the geometry of relativistic space-
time had been established. Indeed, classical spacetime geometry is more intricate
than its relativistic counterpart. Spivak’s account [14] is a valuable resource for
readers with a mathematical inclination. In his monograph Koenderink explains
the significance of basic geometrical concepts, such as “vectors”, “covectors”,
“multivectors”, “multiforms”, “metrics” and “covariant derivatives”, via intu-
itive explanations and illustrations [15]. For the epistemological formulation I
have based myself on this, and on retrospective accounts of Cartan’s early work
by Friedman [16], Glymour [17], and Misner, Thorne and Wheeler [12].

The motivation for considering empty scale space geometry is the scientific
interest in image induced geometries inspired by specific scalar, color, or tensor
image processing tasks, cf. the work by Kimmel, Sochen, Malladi, Lenglet, De-
riche, and Faugeras, a.o. [18,19,20,21]. The PDE approach by Weickert is in the
same spirit [22,23], as are to some extent most of the PDE approaches in image
processing [24]. It is a natural assertion that if one gradually weakens the cou-
pling of multiscale geometry and image structure, the geometry of empty scale
space is the skeleton that should remain in the limit. If one wants to benefit
from the potential power of perturbative techniques for analysing image induced
geometries (cf. Feynman diagrammatic techniques in field theories, approxima-
tions in general relativity based on weak gravitational sources, or perturbative
approaches in the theory of nonlinar PDEs), one needs to understand the “clas-
sical” limit of vanishing coupling strength.



Deep Structure from a Geometric Point of View 137

An additional motivation is that the analysis of geometric axioms of linear
scale space, once these have been synthetically established, may reveal hitherto
unknown and potentially interesting instances of multiscale image representa-
tions.

2 Theory

Let M denote the scale space continuum. I postulate the following geometrical
objects on M, respectively its tangent and cotangent spaces V ∈ TM and V∗ ∈
T∗M (at any implicitly defined point in scale space): (i) an affine connection D,
whose Riemann-Christoffel curvature tensor is R, acting on V∗×V×V×V, (ii)
a covector field ω ∈ V∗, (iii) a symmetric tensor field h acting on V∗×V∗, and
(iv) a vector field v ∈ V. These are subject to the following constraints:

R = 0 (2)
Dxω = 0 (3)
Dxh = 0 (4)

h(ω, ξ) = 0 (5)
Dxv = 0 (6)
ω(v) = 1 (7)

for all x ∈ V and ξ ∈ V∗. Alternatively, in terms of their components relative to
a coordinate basis (summation convention applies):

Ri
jkl = 0 (8)

ωi;j = 0 (9)
hij

;k = 0 (10)
hijωi = 0 (11)

vi
;j = 0 (12)

ωivi = 1 (13)

A semicolon preceding an index i indicates covariant differentiation with respect
to the coordinate xi, i = 0, . . . , n. Index value 0 refers to scale, index values in
the range 1, . . . , n denote spatial components. Recall that the components of the
affine connection are given by the symbols Γ k

ij :

D∂/∂xj

∂

∂xi
= Γ k

ij
∂

∂xk
. (14)

The components of the Riemann-Christoffel curvature tensor can be expressed
in terms of the symbols Γ k

ij and their first order partial derivatives:

Ri
jkl =

∂Γ i
jl

∂xk
− ∂Γ i

jk

∂xl
+ Γm

jlΓ
i
mk − Γm

jkΓ
i
ml . (15)
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Recall that if Γ k
ij and Γ

k
ij are the components of the affine connection in xi,

respectively yi coordinates, then

Γ
k

ij =
∂yk

∂xn

∂xl

∂yi

∂xm

∂yj
Γn

lm +
∂yk

∂xn

∂2xn

∂yi∂yj
. (16)

Affine transformations apparently induce homogeneous transformations. Thus
any two “inertial” systems (in which, by definition, the components vanish iden-
tically) are related by such a transformation.

Eqs. (2–7), respectively Eqs. (8–13), establish the geometry of empty scale
space; no image is involved at this stage. It should be appreciated that these
axioms are, to a large extent, synthetical by nature. They can only be justified
in retrospection by their consistency with (at least) established linear scale space
theory, notably by their capability to geometrize the generating PDE, Eq. (1). In
the next few sections I briefly discuss the intuitional significance of the geometric
axioms introduced above, without claiming rigor. It is well beyond the scope
of this brief treatise to be self-contained with respect to the geometric jargon
employed. The interested reader is referred to the geometry literature, loc. cit.,
and the references therein.

2.1 Flat Scale-Space

Eq. (2), or Eq. (8), expresses the fact that scale space is flat, i.e. has a flat
connection. It can be shown that this is equivalent to the existence of a (local)
coordinate chart in scale space such that the components Γ k

ij of the connection
vanish identically. I will refer to such coordinates as “canonical coordinates”.

The reason for choosing scale space to be flat is the common practice to
describe it in terms of a single coordinate system, usually Cartesian spatial co-
ordinates and logarithmic scale. As noted above this implies a flat geometry. In
this paper I will not elaborate on curved geometries for empty scale space, but
I stress that flatness is a choice made merely for the sake of simplicity. Intrin-
sic curvature of the scale space manifold is a possibility to be investigated. Of
course, a non-vanishing intrinsic curvature will have to be consistent with one’s
assumptions about the scale space domain, such as homogeneity and/or isotropy.
(The nature of intrinsic curvature induced by Eberly’s metric is consistent in this
respect.)

2.2 Absolute Scale

The evolution parameter t in Eq. (1) is a measure of scale in the sense of inverse
resolution at which the image is resolved. One can formally identify scale in scale
space theory with time in classical spacetime physics, e.g. by reinterpreting u as
a temperature function, with initial distribution f , subject to heat diffusion in a
homogeneous, isotropic medium. Thus the notion of “absolute time” in classical
physics formally corresponds to absolute scale in the present context.

Absolute scale is brought in via the unit scale covector ω acting on the tangent
spaces of the scale space manifold. The covector field ω is needed in order to
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subdivide the (n + 1)-dimensional tangent spaces V so as to account for the
special role of the scale dimension. A vector x ∈ V is called scalelike if ω(x) �= 0,
otherwise it is spacelike. This induces a stratification of scale space into spatial
slices labelled by their corresponding scale parameter.

Eq. (3), or Eq. (9), states that the covector field ω is “covariantly constant”,
and thus compatible with the flat connection. I will henceforth consider only the
case of a closed 1-form

ω = dΩ(t) with Ω′(t) > 0 for all t > 0. (17)

A legitimate choice of scale parametrization is Ω(t) = t, the scalar field that
measures absolute scale corresponding to the evolution time t in Eq. (1) up to
an arbitrary offset. The arbitrariness of the offset is removed by considering the
differential form dΩ(t) instead of Ω(t) itself. Below we will consider other (in
some sense more natural) choices of scale parametrization.

2.3 Absolute Space

If we wish to be able to tell whether two fiducial markers in scale space are “at
the same place” we need to distinguish between spatial and scale directions, and
to compare relative spatial positions despite scale differences (absolute space).
This can be done by introducing a family of non-intersecting geodesics that
intersect each fixed-scale plane transversally. If each point is assigned a unique
geodesic we can say that the two markers are indeed at the same place just in
case they lie on the same geodesic.

Dual to the unit scale covector ω ∈ V∗ is the unit scale vector v ∈ V defined
by Eq. (7), or Eq. (13). It is a scalelike vector (recall Section 2.2) tangent to a
geodesic at every point of the scale space manifold. This follows from Eq. (6),
or Eq. (12). Eq. (17) implies that

v =
1

Ω′(t)
∂

∂t
. (18)

Spacelike vectors can be obtained by projection onto the n-dimensional spacelike
subspace of V: if x ∈ V is any vector, then x − ω(x)v is spacelike. Likewise we
may say that a covector ξ ∈ V∗ is scalelike if ξ(v) �= 0, otherwise it is spacelike.
In particular, the covector ξ − ξ(v)ω is spacelike.

2.4 Euclidean Space

We need a principle to derive a Euclidean metric for each n-dimensional fixed-
scale plane in (n + 1)-dimensional scale space. As Friedman points out, it is
better to proceed via a detour, and consider a symmetric bilinear operator h
on the cotangent space, i.e. acting on V∗×V∗ instead of a metric-like object
on V×V. This is the operator h defined through Eqs. (4–5), or Eqs. (10–11).
The first of these equations expresses compatibility of the flat connection with
the Euclidean spatial metric defined within each fixed-scale plane (a replica of
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Euclidean n-space). The second one shows that h is singular in the sense that it
effectively operates on the spacelike components of its arguments.

To see how a genuine metric on the spacelike subspaces of the tangent space
arises, consider the operator

� : V∗ −→ V0 ⊂ V : α 	→ �α
def= h(α, . ) .

(In tensor component notation one refers to this operation as “index raising”.)
It converts an arbitrary covector into a vector, but note that it is many-to-one
as a result of the singular nature of h: if α′ = α + κω for some κ ∈ IR, then
�α′ = �α, i.e. the �-operator discards any scalelike component, �ω = 0 ∈ V. The
n-dimensional spacelike subspace of V is denoted by V0.

A metric g : V0×V0 can now be defined as follows:

g : V0×V0 −→ IR : (x0, y0) 	→ h(ξ, η) , (19)

in which x0 = �ξ and y0 = �η. The metric makes sense only on spacelike vectors,
since ω(�ξ) = 0 for all ξ ∈ V∗. This identity ensures that although the definition
is ambiguous with respect to the choices of ξ and η, no confusion is likely to
arise.

There is a kind of reverse to the � operator, but it is only defined between
the spacelike subspaces of V and V∗ (“index lowering”):

� : V0 −→ V∗
0 ⊂ V∗ : x0 	→ �x0

def= g(x0, . ) .

Note that � ◦ � = id (V0 −→ V0), the identity map on V0, whereas � ◦ � =
π(V∗ −→ V∗

0), the projection onto the spatial subspace of V∗.

2.5 Homogeneous Scale Space Images

With the help of the previous geometrical concepts it is possible to write the
PDE for a scale space image, Eq. (1), into covariant form:

Dvu = div∇u , (20)

in which Dvu = vu = du(v), div x denotes the scale space divergence of the
vector x ∈ V, and ∇u = �du, i.e. the spatial gradient, a spacelike vector. Note
that we do need both the unit scale vector v dual to the unit scale covector ω
so as to obtain a scale (or rather, scalelike) derivative on the left hand side of
Eq. (20), as well as the singular “dual metric” h so as to prevent a second order
scale derivative from showing up on the right hand side. Since x ∈ V0 implies
div x ∈ V0, a spatial gradient allows us to construct a spatial Laplacean, exactly
as required.

In terms of an arbitrary coordinate system we have (a colon/semicolon pre-
ceding a subscript denotes a partial/covariant derivative w.r.t. the corresponding
coordinate, respectively):

viu;i = hiju;ij . (21)
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Alternatively,
viu,i = ‖g‖−

1
2

(
‖g‖

1
2 hiju,j

)
,i

, (22)

in which ‖g‖ = det g, the determinant of the spatial metric induced by h as
defined by Eq. (19).

If we use Cartesian spatial coordinates and logarithmic scale as canonical
coordinates, with

v =
∂

∂τ
and ω = dτ , (23)

with scale parametrization σ =
√

2t = eτ (i.e. Ω′(t) = 1/(2t), recall Eq. (17)),
and if we set the spatial metric to be Euclidean, say

hij =
[
01×1 01×n

0n×1 σ2In×n

]
0≤i,j≤n

, (24)

then Eqs. (21–22) take the familiar form of Eq. (1):

∂u

∂τ
= σ2∆u , (25)

in which the Laplacean assumes the standard form as a sum of pure second order
spatial derivatives.

Eberly’s metric corresponds to a dual metric tensor given by

hij =
[
ρ2 01×n

0n×1 σ2In×n

]
0≤i,j≤n

. (26)

The non-vanishing scale component induces a second order scale derivative in
the Laplace-Beltrami operator in whatever coordinate system, e.g. in canonical
coordinates we obtain

∂u

∂τ
= ρ2 ∂2u

∂τ2
+ σ2∆u , (27)

Consistency with Eq. (1) requires that we take the singular limit ρ −→ 0.

2.6 Foveal Scale Space Images

The field equations Eqs. (2–7), or (8–13), admit nontrivial solutions if we adopt
a different choice of canonical coordinates. A relevant case is that of a foveal
system, whereby homogeneity is dropped in return for the ability to sample a
small region of interest around some preferred point with enhanced resolution,
i.e. a fovea. For simplicity I consider the case of n = 2 spatial dimensions.

Let us consider Cartesian spatial coordinates (x, y) ∈ IR2 and absolute scale
σ ∈ IR+, and circumvent the difficulties of non-Riemannian geometry by postu-
lating a regularized (dual) metric of the form

hij
ε ∼

ε2σ2 0 0
0 x2 + y2 0
0 0 x2 + y2

0≤i,j≤2

or hε
ij ∼

1
ε2σ2

0 0

0
1

x2 + y2
0

0 0
1

x2 + y2
0≤i,j≤2

,
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with ε > 0 constant. Then we can use the well-known result that there exists
a unique connection compatible with the metric, or, equivalently, with the dual
metric, i.e. with Eq. (4) or Eq. (10), viz.

Γ k
ij =

1
2
hkl

ε

(
∂hε

jl

∂xi
+

∂hε
il

∂xj
−

∂hε
ij

∂xl

)
. (28)

A straightforward computation yields

Γ 0
00 = − 1

σ

Γ 1
11 = − x

x2 + y2

Γ 1
21 = − y

x2 + y2

Γ 1
12 = − y

x2 + y2

Γ 1
22 =

x

x2 + y2

Γ 2
11 =

y

x2 + y2

Γ 2
12 = − x

x2 + y2

Γ 2
21 = − x

x2 + y2

Γ 2
22 = − y

x2 + y2

and all other Γ i
jk vanish. Notice that none of these depend on ε, so these sym-

bols are consistent with the non-Riemannian limit ε −→ 0 (but unlike with the
regularized case not necessarily unique). Apparently the coordinates (x, y, σ) are
not canonical coordinates. Canonical coordinates can be obtained by setting the
left hand side of Eq. (16) equal to zero. Let us identify (x0, x1, x2)=̂(σ, x, y) and
(y0, y1, y2)=̂(τ, ρ, φ), such that

(σ, x, y) = (eτ , eρ cosφ, eρ sinφ) . (29)

The corresponding Jacobian matrices, expressed in xi coordinates (i and j are
row and column index respectively), are

∂xi

∂yj
=

σ 0 0
0 x −y
0 y x


0≤i,j≤2

respectively
∂yi

∂xj
=


1
σ

0 0

0
x

x2 + y2

y

x2 + y2

0 − y

x2 + y2

x

x2 + y2


0≤i,j≤2

.

(30)
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Furthermore

∂2x0

∂yi∂yj
=

σ 0 0
0 0 0
0 0 0


0≤i,j≤2

,
∂2x1

∂yi∂yj
=

0 0 0
0 x −y
0 −y −x


0≤i,j≤2

and
∂2x2

∂yi∂yj
=

0 0 0
0 y x
0 x −y


0≤i,j≤2

.

(31)

With the help of these matrices, a tedious but straightforward computation
shows that, indeed, all Γ

k
ij in Eq. (16) vanish identically. Thus (τ, ρ, φ) are

canonical coordinates. These coincide with the familiar logarithmic scale pa-
rameter, respectively the log-polar spatial coordinates normally used to describe
human cortical magnification due to foveation. This same result, by the way, can
be obtained by an alternative method based on a spatial metric transform [25].

A subtle complication that has been glossed over here is the singularity at
(x, y) = (0, 0). For this case it is tacitly understood that Eqs. (2–7) or Eqs. (8–13)
hold almost everywhere.

3 Summary and Conclusion

Scale-space cannot be endowed with a Riemannian metric. Its geometry is akin
to Newtonian spacetime geometry as described by Cartan [13], with scale and
time formally identified.

Various scale space theories fit naturally in the geometric framework of this
paper, such as the standard formulation of homogeneous scale space, and the
foveal scale space incorporating the inhomogeneous retinocortical mapping re-
sulting from eccentricity dependent visual receptive field sizes (“log-polar scale
space”). These scale space instances are singled out by postulating canonical
coordinatisations consistent with the proposed geometric axioms. In practice
canonical coordinates are the natural ones to use for discrete sampling on a
regular grid. This depends on application as demonstrated.
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A Eberly’s Riemannian Scale-Space

Eberly [9,10] proposed to endow scale space with a Riemannian geometry. In
this case the geometric object of interest is the scale space metric tensor, G.
It is well known that there exists a unique affine connection compatible with a
Riemannian metric. The Riemann-Christoffel curvature tensor thus follows from
the metric.

More specifically, the metric proposed by Eberly depends on a parameter
ρ > 0 that weighs the relative importance of spatial and scale measurements.
The metric is given by

G =
1
2t

(
n∑

k=1

dxk ⊗ dxk +
1

2ρ2t
dt⊗ dt

)
,

inducing a constant negative Riemannian curvature K = −ρ2. Riemannian cur-
vature is defined for two independent 2-surface tangent vectors a, b ∈ V as

K(a, b) =
R(�a, b, a, b)

(a · a) (b · b)− (a · b)2
,

in which �x = G(x, . ). Note that K(a, b) remains the same if a and b are replaced
by linear combinations.

The Riemannian geometry corresponding to the case K = −1 is known as hy-
perbolic geometry. For details the reader is referred to existing literature [26,27].
For application in the context of linear scale space theory, cf. Eberly’s accounts
[9,10].
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Abstract. A maximum likelihood local scale estimation principle is pre-
sented. An actual implementation of the estimation principle uses second
order moments of multiple measurements at a fixed location in the im-
age. These measurements consist of Gaussian derivatives possibly taken
at several scales and/or having different derivative orders.

Although the principle is applicable to a wide variety of image models,
the main focus here is on the Brownian model and its use for scale
selection in natural images. Furthermore, in the examples provided, the
simplifying assumption is made that the behavior of the measurements
is completely characterized by all moments up to second order.

1 Introduction

The problem of scale estimation, or selection, is considered from a probabilis-
tic perspective. For a given image a local scale estimation principle based on
maximum likelihood is presented.

The basic idea is that, assuming a particular image model, an expression
for the second order moments of measurements in an image can be derived for
every scale. Such measurements can consist of, for example, a certain n-jet at a
location or intensity measurements at several scales. Given an actual image and
assuming that it is a realization of this image model, the local likelihood can be
determined for every scale. The scale at which the likelihood becomes maximal
is then taken to be the local scale at this point.

In what follows, a general maximum likelihood approach to this problem is
formalized. Subsequently, assuming that the local image measurements consist
of Gaussian filters, or derivatives thereof, a general expression for the second
order moments under a 2-dimensional Brownian image model is given and, in
addition, it is assumed that the filter responses can be described adequately by
means of knowledge about the central moments of second order.

Following this formulation of the Brownian scale selection principle, two spe-
cific cases are illustrated more extensively, i.e., the case where scale is to be
estimated from the n-jet and the case where a local estimation is based on a

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 146–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Maximum Likely Scale Estimation 147

Gaussian filtering over several scales. Some illustrative examples on artificial
Brownian images are provided.

Finally, the relation of the scale estimation principle with other scale selection
mechanisms is shortly discussed.

2 Maximum Likelihood Scale Estimation

Let F 1
x , F 2

x , . . . F k
x be a collection of k filters at a location x. Often, these filters

are linear and typically assume the form of an inner product, i.e., for every
i ∈ {1, . . . , k}, there is a function f i

x defined on the domain of images such that

F i
x[L] = 〈L, f i

x〉

for an image L. Fx := (F 1
x , F 2

x , . . . F k
x )t, i.e., the k-dimensional vector of mea-

surement apertures.
Given a particular image model for every scale s, a k-dimensional distribution

ps of the filter responses coming from Fx can be determined. The maximum
likelihood estimate for the scale at a specific location x, denoted by ŝ(x), is then
given by

ŝ(x) = argmax
s∈(0,∞)

ps(Fx[L]) ,

where the image L is assumed to be a realization of the image model under
consideration and Fx[L] is the vector with filter responses at the location x in
the image L.

3 Brownian Image Model

The specific 2-dimensional model that is considered in more detail is the Brow-
nian image model [1] (see also [2]). This model is the least committed, scale
invariant image model that adequately represents the first and second order
structure in natural images.

Using this model, restricting the types of measurement types to Gaussian
filters and their derivatives, and making the simplifying assumption that the
measurement behavior is fully specified by its second order structure, a more
explicit expression of local likelihood over scale is given.

For a zero-mean Brownian model at scale s—having zero-scale power spec-
trum β/‖ω‖2, one can derive an analytic expression for the second central mo-
ment Cστ

mn(s) (i.e., the covariance) of the responses of the Gaussian derivative
filters Gσ

m1n1
and Gτ

m2n2
at a position x. In this, m1n1 and m2n2 indicate the

order of derivation for both filters.
In [1] a special instance of this covariance is derived. In the case considered

there, one has that σ = τ and s = 0, and the covariance is given by

Cσ
mn = (−1)

m+n
2 +m2+n2

βm!n!
2πσm+n2m+n(n + m)m

2 !n
2 !

,
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if both m = m1 + m2 and n = n1 + n2 are even. Otherwise, Cσ
mn = 0. From the

derivation in [1], it then readily follows that in our case, if both m = m1 + m2

and n = n1 + n2 are even, the covariance is given by

Cστ
mn(s) = (−1)

m+n
2 +m2+n2

βm!n!

2π
(√

σ2

2 + τ2

2 + s2

)m+n

2m+n(n + m)m
2 !n

2 !

,

and again, Cστ
mn(s) equals zero otherwise. See [2] for more details.

A problem with the forgoing analytic expression for the covariance is that
the parameter β is not known a priori. The influence of this parameter on the
eventual maximum likelihood estimation of the scale, is related to changing
image intensities by a certain multiplicative factor, and it can have a considerable
impact. Our scale estimate should, of course, be invariant under intensity scaling
and, therefore, intensities should be normalized in an explicit or implicit manner.
Our choice is to take care of this implicitly by normalizing the covariance matrix
used in the experiments: After determining the initial entries of the covariance
matrix, say C′(s), the final matrix C(s) is a scaled version of C′(s) such that
detC(s) = 1, i.e.,

C(s) =
C′(s)

k
√

detC′(s)
,

where k is the number of filter outputs based on which the estimation takes place.
It should be noted that this normalization also has an effect on the dependence
of C on s.

Because the scale estimation is based on (up to) second order structure and all
zeroth orders equal zero, and because detC(s) = 1 for all s ∈ (0,∞), determining
the maximum likely scale boils down to taking the scale which gives the smallest
Mahalanobis distance Fx[L]tC−1Fx[L] for a feature vector Fx[L], i.e., for the
maximum likely scale ŝ at position x, it holds that

ŝ(x) = argmin
s∈(0,∞)

Fx[L]tC−1(s)Fx[L] .

The scale estimations performed in the next section are based on this expression.

4 Illustrative Examples

This section chiefly provides a pictorial (over)view of the performance of the
proposed scale selection procedure. For this purpose, three artificial noise images
are generated (see Figure 1), all derived from the same initial, i.i.d., 256× 256,
Gaussian noise image. The first one is a Brownian image observed at scale s = 8.
A Brownian image is a Gaussian random function for which the increments
B(x+∆x)−B(x) are independently, identically, and normally distributed with
a variance proportional to the length of ∆x.

The second one is a Brownian image observed at a scale that is varying in
the x-coordinate: At the left and right border the scale is 2, while the scale
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Fig. 1. On the left is the Brownian image observed at scale 8. The middle figure depicts
the space-varying Brownian image. On the right is the image obtained by observing
Gaussian i.i.d. noise at scale 8.

2

8

32

Fig. 2. Scale estimation based on the 2-jet at scale 4. The mean and standard deviation
of the estimates for the constant Brownian image (on the left) are 10.4 and 10.1,
respectively.

in the middle is
√

22 + 322 ≈ 32.1; the measurement scale follows a Gaussian
profile along the x-direction. The third one, is the initial Gaussian noise image
but then, like the Brownian image, observed at scale 8.

On these three images, local scale estimations are performed using nine differ-
ent feature sets (behind the feature description, in parenthesis, is the number of
filters and the figure in which the corresponding image containing the estimates
is displayed):
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2

8

32

Fig. 3. Scale estimation based on the 3-jet at scale 4. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 8.6 and 3.5,
respectively.

1. the 2-jet at scale 4 (5 dimensions, Figure 2),
2. the 3-jet at scale 4 (9 dimensions, Figure 3),
3. the 4-jet at scale 2 (14 dimensions, Figure 4),
4. the 4-jet at scale 4 (14 dimensions, Figure 5),
5. the 4-jet at scale 8 (14 dimensions, Figure 6),
6. the 4-jet at scale 16 (14 dimensions, Figure 7),
7. the 5-jet at scale 4 (20 dimensions, Figure 8),
8. three 2-jets at scales 2, 4, and 8 (15 dimensions, Figure 9),
9. three 2-jets at scales 4, 8, and 16 (15 dimensions, Figure 10).

We note that in our setting an n-jet does not include the zeroth order measure-
ment, because it does not contain any information about the image structure
necessary to perform an adequate scale estimation.

The Figures 2 to 10 show the outcome of the scale estimation procedure on
all three images in Figure 1 based on the nine different filter collections. The
lighter the color that is displayed, the larger the estimated scale (with white the
largest scale and black the smallest). In every figure, colors in the three images
are scaled relative to each other. In the caption, the mean and the standard
deviation of the estimated scales for the constant scale Brownian image is given.

Directly below every scale estimate image is a 1-dimensional plot that gives
the average of the estimated scale in the y-direction in the image directly above
it. The thin black lines give an indication of the variance around the mean and
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2

8

32

Fig. 4. Scale estimation based on the 4-jet at scale 2. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 8.3 and 1.3,
respectively.

2

8

32

Fig. 5. Scale estimation based on the 4-jet at scale 4. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 8.4 and 1.5,
respectively.
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2

8

32

Fig. 6. Scale estimation based on the 4-jet at scale 8. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 8.5 and 2.3,
respectively.

2

8

32

Fig. 7. Scale estimation based on the 4-jet at scale 16. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 7.9 and 5.0,
respectively.
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2

8

32

Fig. 8. Scale estimation based on the 5-jet at scale 4. The mean and standard devi-
ation of the estimates for the constant Brownian image (on the left) are 8.3 and 0.9,
respectively.

2

8

32

Fig. 9. Scale estimation based on the 2-jets at scales 2, 4, and 8. The mean and standard
deviation of the estimates for the constant Brownian image (on the left) are 8.4 and
0.8, respectively.
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2

8

32

Fig. 10. Scale estimation based on the 2-jets at scale 4, 8, and 16. The mean and
standard deviation of the estimates for the constant Brownian image (on the left) are
8.5 and 1.3, respectively.

are plotted at twice the standard deviation from the mean. For comparison, the
real observation scale is shown in the same plot in red/gray.

From Figures 4 to 7, and Figures 9 and 10, one of the first observations
that can be made is that increasing the scale leads to increased variance of the
scale estimate. This behavior may be explained by the fact that the (co)variance
for higher-order derivatives for increasing scale decreases rapidly and therefore
measurement errors or instabilities in these observations have a large impact on
the final estimate (note that the inverse of the covariance matrix C is used in
calculating the Mahalanobis distance).

Although not apparent from the experiments, it is also to be expected that
for very small scale, say around the inner scale, filter outputs are so unreliable
that scale estimates will break down, resulting in a large variance.

From Figures 2, 3, 5, and 8, among others, it is clear that the number of
filters used in the estimations has a large influence: The more filters that are
used the more accurate the estimates. Of course, due to, for example, numeri-
cal limitations, this increase of precision will only be observed up to a certain
maximum number of features. One weakness of the estimation procedure is that
the inverse of the analytical covariance matrix is needed and inverting it may
become unstable at a certain point. However, considering the special structure
of the matrix, it may turn out to be possible to give an analytic expression for
the inverse as well.

Generally, the average scale estimate for the constant Brownian image is
quite close to the actual scale of the underlying process. Remarkably, though, is
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that it is more often overestimated than underestimated. This is partly because
the inner scale does not appear in the expression for the analytic covariance.
However, it is hard to judge, based on the illustrations presented, whether or
not the consistent overestimation can be explained completely by this.

For the blurred Gaussian image the mean scale seems slightly bit more vari-
able than for the Brownian image, and the variance might be a bit lower on
average. What is most notable, however, is that the actual observation scale is
rather consistently underestimated. A simple explanation for this may be that,
although the constant Brownian and the constant Gaussian have the same scale,
a Brownian image is intrinsically more blurred, and as such at a higher scale,
than a Gaussian noise image. The reason for this is that the power spectrum of
Brownian noise drops of like 1/f2, while the spectrum for Gaussian noise is flat.

Severe underestimation of the scale is also an issue for all of the filter choices
in the Brownian image with spatially varying scale. Here part of the problem
is that the size of the filters, based on which the estimation is carried out, is
relatively large compared to the part of the image in which it actually takes
on a particular scale. E.g. the smaller the scale used to compute the several
4-jets is the higher the peak in the y-averaged estimate. This part in the image,
having largest scale, is for one part underestimated, because surrounding image
parts are of lower scale. The scale 2 parts, for example, are relatively large and
flat, and, indeed, the scale is predicted quite adequately in these areas. What
we cannot explain is why the underestimation takes such severe form. Possibly,
there is a bias towards small scale structures originating from the estimation
process.

5 Discussion and Conclusions

A general local scale estimation procedure employing feature-based maximum
likelihood estimation has been proposed and demonstrated to work quite well
in certain settings for particular collections of filters. The specific instance of
the general framework we considered provides an estimate of the local scale
assuming the image to be from an underlying Brownian image model at a specific
scale. Here, only artificial images have been experimented with and the actual
performance, and interpretation of the outcome, on, for example, natural images
has not been studied yet and is considered for future research.

A well-known, methodology for scale selection, which can be considered to be
directly related to scale estimation, has been proposed by Lindeberg [3]. In [4],
a similar selection scheme based on a fractional Brownian image model drew the
connection between the fraction parameter and the intrinsic scale of the feature
to be detected. Majer’s dissertation [5] provides a very general scale selection
framework based on a stochastic mechanism.

One of the most notable differences between the previous schemes and the
scheme proposed here is that, in principle, the former are employed in combina-
tion with a specific feature detection task, whereas the current approach allows
for a scale estimate irrespective of actual features to be detected. Therefore the
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scheme proposed here could be considered a way to obtain a local estimate of
the intrinsic scale of the image. Especially References [4] and [5] could pro-
vide valuable clues on how to relate task-dependent and generic scale estimation
schemes.

An interesting related remark, suggested in part by an appraiser of some of
our preliminary work done on this subject, is that an approach similar to the
one presented here might be directly applicable to generic feature detection. The
basic underlying idea is that one could look at the actual likelihood at every po-
sition and find the positions in which the likelihood is small. The low likelihood
indicates that the features measured do not fit the global underlying model well
and therefore indicates a point of interest. Further considerations may, more di-
rectly, relate particular choices for such likelihood schemes to some of the known
scale selection schemes. It would be interesting to see under what assumptions
for the maximum likelihood model, it is possible to mimic the feature specific
scale selection methods of Lindeberg [3].

Finally, although their focus is on determining a global estimate, a somewhat
related approach to scale estimation may be found in [6]. In this, the authors
derive a closed-form maximum likelihood estimate of scale for a broad class of
Markov random field models. It is not directly clear how this relates to our jet-
based estimation principle, however the global scale estimate in [6] should have
a direct interpretation in terms of an averaging over certain local estimates such
as can be determined in our framework.
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Abstract. We first describe two stochastic algorithms which build trees
in high dimensional Euclidean spaces with some adaptation to the ge-
ometry of a chosen target subset. The second one produces search trees
and is used to approximately identify in real time the pose of a polyhe-
dron from its external contour. A search tree is first grown in a space
of shapes of plane curves which are a set of precomputed polygonal out-
lines of the polyhedron. The tree is then used to find in real time a best
match to the outline of the polyhedron in the current pose. Analyzing
the deformation of the curves along the tree thus built, shows progressive
differentiation from a simple convex root shape to the various possible
external contours, and the tree organizes the complex set of shapes into
a more comprehensible object.

1 Introduction

For many years Biology has mostly imported its models from human Technol-
ogy, but as it addresses more complex problems, Technology borrows more of its
solutions from Biological organisms. The tree algorithms we present here were
first studied as abstractions or models of some biological phenomena like angio-
genesis or artificial neural networks [3]. As such they have a more concrete and
geometric flavor than the usual tree structures used in computer science. We
now test their possible technological utility applying them to a classical Vision
problem with important industrial and medical applications. The problem is to
find the pose of a known polyhedron from the outline of its apparent contour. It
is motivated by such fields as Robotics, Computer Assisted Surgery, Augmented
Reality, and all sorts of tracking and recognition problems. Of course a lot of
work has already been done in this area and, considering that the algorithms
described are members of a family only starting to be studied, we shall only test
the relevance of the approach and emphasize the versatility of the algorithm,
which can be readily adapted to other problems. These trees also have aspects
relating to shape description and the multi-resolution paradigm that might be
of interest to the participants of this conference. We shall first describe the al-
gorithms as a way to build geometric objects which grow like vessels toward an
organ or tumor in familiar spaces, then turn to trees in spaces of shapes of plane
curves, then address the vision problem and how to implement a solution, and
finally comment on some multi-resolution aspects of the tree built.
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2 Adaptive Trees

For the moment we shall describe the tree algorithms in a Euclidean space,
like IRn, and will generalize only when needed for shape spaces. To explain our
vocabulary, we can think of them as growing a vascular branching network from
a seed toward a subset called the target, which stands like an organ or tumor
to be reached in all of its parts. The tree algorithms start from a point (we
call it the seed, it can also be a finite set of points) in a Euclidean space and
grows a tree toward a subset (we call it the target), in the same space. It is a
stochastic algorithm where points are repeatedly drawn from the target with a
given probability distribution. We use uniform distributions on regular targets,
but one can also start from a probability distribution in IRn and define the
target as the support of it. The initial state of the tree is the seed, and each
step adds a single point to the tree (we call this operation : accretion), with
some connectivity data which gives it the structure of a tree. It is convenient to
describe two variants of the algorithm.

2.1 First Algorithm

Start with a finite set R0 as the initial network.
The rules for accretion in the first algorithm are, at the i-th step, after a

point ai has been randomly draw from the target:

1. Find the point bi of the tree Ri−1 closest to ai,
2. Build the point for accretion as the barycenter b′i = ε.ai + (1− ε).bi , with

a small positive ε so that the accretion will take place close to the network (we
fix ε from the beginning, and the algorithm is not very sensitive to it).

3. Set Ri = Ri−1 ∪ {b′i}. We say that accretion of b′i took place at bi. The
points b′i and bi are declared to be neighbors.

This first set of rules leads to adaptive branching of the tree and some con-
vergence properties of the tree toward general target sets have already been
proved [5], namely that any neighborhood of a target point will in probability
be eventually entered by the network (uniformly if the target is compact).

To understand why branching occurs, observe (fig. 1) that when the network
gets close enough to the target, the target is seen from some points of the network
with an angle exceeding π/2. It is then possible to accrete successively two points
on the same point of the network, leading to branching (other cases are possible).
The phenomenon of abortive bifurcations also occurs: observe on figure 1 that
the first branching follows some small “spines” or “thorns” on the network. These
spines are really branchings, but they were followed by some competition among
the two branches, leading to the death of one of them, i.e., the other branch
grew enough to be closer to any point of the target than any point of the first
branch, thus irreversibly inhibiting the growth of it. That phenomenon has been
analyzed in [5]: such competition leads to unstable “abortive” branchings when
far enough from the target, but branching becomes stable when closer to the
target, leaving both branches alive. The repetition of changes in the structure
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Fig. 1. Growing a tree to a line segment and a circle with the first algorithm. Abortive
branchings can be observed.

of the dynamical systems governing the evolution of branches can be related to
R.Thom’s notion of a generalized catastrophe [12] to describe adaptive branching
morphologies.

The behavior of the network toward complex or multiple targets is somewhat
reminiscent of our vascular metaphor, as shown (fig. 1), showing convergence of
the network to the target.

The complexity of the algorithm depends heavily on the search for a clos-
est point at step 1 of the algorithm. At any time most points in the network
are inactive since for any point of the target there is a point in the network
which is closer than them. Such inactivation is irreversible, and a garbage col-
lection, removing inactive points from the list of points to be tested, is highly
desirable when possible. However such pruning algorithms require simple target
geometries, which hinders pratical performance in the general case.

The dependence of the complexity on the dimension of the ambient space
involves only computing the distance, so the algorithm can easily be run toward
targets in high dimensional spaces (e.g., IR200, as in the case of plane curves).

2.2 Second Algorithm

In order to get a tree which can be used for searches, and also to improve
performance by enabling a fast search for nearest points in the network, we
modify the set of rules, adding a rule to be used at branching steps. This rule
irreversibly assigns a portion of the target to each of the future subtrees arising
from the bifurcation, thus preventing abortive branchings and speeding up the
search for a closest point at each step of the algorithm.

Rules. During the evolution, the space will be divided into more and more
disjoint regions, starting with the whole space as a single region, and a region
will be split when some branching occurs in it (the bird eye’s view of fig.2 shows
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the nesting of regions). Each region will have its own seed and sub-target when
created, and it will grow a network of its own. We take as a rule (Rule 0) that
the intersection of the target and a region is that region’s sub-target.

For a network, we shall call tips the points which have one neighbor, and
branching points the points which have three neighbors. The seed is considered
to have a neighbor from the start, even if that neighbor is not part of the region
network; thus the seed is a tip before any accretion and becomes a branching
point when two points are accreted to it.

At any time the total network is the union of all these regions’networks and
of some archived points to keep a global tree starting from the first seed.

The rules for region splitting and network growing are now stated.

1. Start with the space as the only region, a single point as its seed, and the
target as its sub-target.

Repeat:
2. Draw a random point from the target, determine to which region it belongs

(call D that region).
3. Perform accretion on the network of D, according to the rules of the first

algorithm.
4 Splitting rule: If branching occurs in D’s network, that is if the accretion

did not take place at the last point accreted in D, thus creating a branching
point (with the special rules mentioned for the seed), then keep the two points
accreted on the branching point, call them s1 and s2. Archive the points between
the seed and the branching point and discard the others. Split D into D1 and
D2 with D1 defined as the subset of points of D which are closer to s1 than to
s2, and D2 being the subset of points of D which are closer to s2 than to s1.
Make s1 the seed of D1 and s2 the seed of D2. The sub-target is split according
to rule 0.

There should be some rule, deterministic or stochastic, for ties in distance
comparisons. However some settings make such rules unnecessary, e.g., assuming
that the intersection of the target with any hyperplane has null measure (such
hypothesis can be supported by genericity arguments for some cases of manifolds
with uniform probability). We shall make that assumption and disregard ties as
almost surely absent. Rules for stopping the process are up to the user, e.g.,
number of points accreted, or number of regions, or some quantitative criterion
related to the distance from the network to the target.

This algorithm is very efficient even on complex targets. The search at step
2 uses a binary search tree which in our experiments had satisfactory balancing.
The rest of the search is done in the region’s network which has small size. We
maintain two trees. The binary search tree to rapidly locate a target point only
stores the seeds of the regions (or pointers to them). Another tree stores the first
seed and all the accreted points; it is used for the final parts of searches and also
serves as an archive of the whole network.

Experimental Behavior. Experiments with this second algorithm show be-
haviors similar to the first one on many targets. Compare for instance figure 1
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Fig. 2. From a seed not in the target’s plane, evolution toward a square target with
the second algorithm. What is shown is the projection of the network onto the target’s
plane. Notice the nesting of regions and the linear separatrices.

and figure 3 obtained for the same target with the two algorithms. Some differ-
ences must however be noticed. There are no abortive branchings for the second
algorithm, which is one of its built-in properties, since branching leads to some
irreversible splitting of the target and to no further competition between the
networks of the corresponding subregions. Also the angle of the first branching
is smaller with the second algorithm since no abortive bifurcation delays it. In
this way the first algorithm adapts better to the target, producing a shorter
network. The difference can be more dramatic for very uneven probability mea-
sures with light weighted portions of the target that manifest themselves late:
late targets can access the closest part of the grown net with the first algorithm,
whereas with the second one they have to address the current set of subnetwork,
a possibly sub-optimal behavior.

Some target geometries are definitely bad for the second algorithm (fig. 4).
When some parts of the target are ”hidden” by other ones, the network needs to
get very close to some target parts in order to reach other ones, and this produces
region splitting adapted to some parts but not desirable for other parts, and still
irreversible. This leads to the parallel growing of many branches, clearly an
undesirable behavior. The first algorithm, on the contrary, can restart a network
to a further target from a single tip. That difficult situation is only attenuated
when parts of the targets are not strictly hidden by other one. In figure 5 we
use the same projection representation as in figure 2. The target is made of two
equal circles and a line segment lying in IR2, with a seed in IR3 not contained in
the target’s plane. Observe that the network toward the circle on the left side is
perturbed by the separatrices caused by the nearby line segment.
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Fig. 3. Growing a tree with the second algorithm to the same target as in fig. 1

Fig. 4. Second algorithm, with two target segments: traversing the first part of the
target sets up irreversible corridors constraining the adaptation to the second part

Fig. 5. From a seed not in the target’s plane, evolution toward two circles and a segment
(projection of the network on the target’s plane). Approaching the segment interferes
with the evolution toward the circle besides it.
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Theoretical Considerations. The convergence results obtained for the first
algorithm do not apply to the second one, and some of the experimental cases
we showed should make us careful. Here we only outline our present directions
of research. It must first be kept in mind that many variants of these algorithms
exist, and that exploring them could be as rewarding as concentrating on a
single particular one. For instance, it is easy to change the splitting rule so as
to replace the separating hyperplane by one which splits the target better in
some cases (we tried one that bisects the angle between the accreted points; this
can be achieved by modifying the two seed points and still keeping the rest of
the algorithm unaltered). One can also delay the splitting while collecting some
rough statistics on the points drawn.

In the direction of some convergence results, we shall distinguish two kinds of
problems. Proving convergence results with finite (meaning: not infinitesimal) ε
leads to probability questions. For instance one can use the theory of branching
processes to study situations like figure 4. On the other hand, one can study the
limit of the process when ε tends to 0, possibly with some restrictions on the
target, such as being contained in a hyperplane which does not contain the seed.
Still being relevant to the behavior of algorithms, questions of that second type
rely more on deterministic and geometric tools, and explicit deterministic limit
processes can be found for some targets.

3 Growing Search Trees in Spaces of Curve Shapes

In order to retrieve the pose of a known polyhedron from the shape of its external
contour, we need to search a a set of shapes of plane curves for that one closest
to the shape of a given contour. We are thus going to grow a search tree using
the second algorithm in a set of curve shapes. The formalism of section 2 has
to be slightly modified, but we do it in a way that also permits growing a tree
according to algorithm 1, and keep the formal convergence results in that case.

We are really interested in comparing shapes, i.e., we identify all polygonal
plane curves which differ only by a plane displacement (rotation and translation).
A shape is a set of such equivalent curves, even if it can be coded by one of its
representative curves. Shape spaces have been studied by statisticians [2]. In
order to extend our algorithms to it, the set of shapes needs a distance and an
equivalent of our barycenter construction.

3.1 Computing the Distance

Two curve shapes c1, c2 being given each by a representative curve (C1 and C2),
we compute a distance d(c1, c2). Each curve Ci (i ∈ {1, 2}) is parameterized,
i.e., it is given by a continuous mapping σi : S1 → IR2 (assumed to be bijective)
where S1 is the unit circle, and we assume that the parameter is proportional
to the curvilinear abscissa measured from σi(0). For any phase φ ∈ [0, 2π] and
any plane displacement T we can compute the quantity dφ,T (σ1, σ2) equal to
the square root of the average of ‖T (σ2(t + φ))− σ1(t)‖2 over t ∈ [0, 2π] (where
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the norm is the Euclidean norm in IR2). We take as the distance d(c1, c2) the
minimum of dφ,T (σ1, σ2) over all possible values of T and all possible values of φ.
Practically, the average is approximated using sampling, only a finite number of
values of φ are tried, and there are classical formulas from Procrustes’s methods
[7](using singular value decomposition) to find directly the minima over T .

3.2 Computing a Shape for Accretion

Once a target shape a has been randomly drawn and the closest network shape
b has been found (in the relevant region if we apply the second algorithm), we
need to compute the shape to be accreted. Any member of its class is adequate.
We note ε.a + (1− ε).b the shape we are to find. We might want the following
property to be enforced:

d(a, ε.a + (1 − ε).b) = (1− ε).d(a, b)

the reason being that this permits to use with no modification the proof of the
convergence theorem in the case of the first algorithm and obtain a similar result
for a tree in the space of curve shapes (there is however some latitude to still
get convergence with an approximate relation). An approximate solution is the
following: After we computed the distance between a shape a in the target and
a shape b in the network, these shapes being represented by the parameterized
curves A and B respectively (with associated mappings σA and σB), we know
the special φ̂ and T̂ which permit to reach the minimum of dφ,T (σ2, σ1) (here
we prefer that order, even if it gives the same value to the distance). In other
words, we know how to position two curves representing the two shapes and how
to build a bijection between them for a best match. We just interpolate the curves
in these positions using the given bijection, to get a curve C parameterized by:

σC : t 	→ ε.T̂ (σA(t + φ̂) + (1− ε).σB(t)

With these two modifications, we can apply either the first algorithm or the
second one to grow trees in spaces of curve shapes. For the Vision problem we
need a search tree and thus only use algorithm 2.

4 Application: Pose Identification from Outline of
Polyhedra

We now test our second algorithm on a Vision problem. To cite [8] : “One of
the classic problems in model-based vision is the estimation of the pose (i.e.,
the location and orientation) of a 3D object with respect to a scene described
by sensory data (2D images or 3D range data)”. In Medical Imaging and Com-
puter Assisted Surgery for instance, anatomy-based registration tasks have to
solve instances of that problem. Much work has of course been done in that field.
Most of the early methods have used some iterative minimization of a functional,
with good final results in terms of precision but with problems to find a good
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initial position and avoid local minima. This is where several methods can co-
operate, and tree based methods, many of them using Breiman’s Classification
ad Regression Trees [1], are getting popular [10] [9]. We must also mention the
vast topic of neural networks, among which Kohonen’s Self Organizing Maps [6]
where used for the identification of articulated models [11], an extension of the
pose identification problem. As an apology for the algorithm we present, let us
notice that most of the mentioned methods need either a lot of preprocessing, or
the choice of several critical parameters, functionals, criteria, and often combine
several methods or classifiers.

Here we take as our only data the outline of the polyhedron seen with an un-
known pose. The method extends to a smooth surface. Scene analysis often uses
other clues such as lighting and texture, but some X-Ray based registration prob-
lems have comparable restricted input [8], using like in standard radiographic
interpretation the singular curves of the projection of smooth contrast surfaces
along the X-rays [4], or only part of them. Our data are simulated, i.e., com-
puted from a model of the scene. We first choose a polyhedron (here a randomly
perturbed piece of a discretized solid torus). That polyhedron now being per-
fectly known, we can compute, for each pose of it, the curve of the outline of its
projection on a fixed plane (we take an orthogonal projection), which figures its
external contour as seen by a remote observer. We only keep the outline to get a
single curve whatever the pose. The problem is: given an outline curve, retrieve a
pose of the polyhedron (at least one of them if there are several solutions) which
gives the same (or nearly the same) outline curve on the specified projection.

We take as our target the set of outlines possibly observed for the given
polyhedron. It is a small subset of the set of all the possible curve shapes which
we take as the ambient space. Each shape is stored by a member curve. To grow
a search tree according to the second algorithm, we randomly draw rotations of
the polyhedron around its center of mass, and for each of them we compute the
outline, getting a point of the target. The density on the target is thus induced
from a uniform probability measure on the set of rotation matrices. We set the
seed equal to an ellipse and grow the tree from it, using the accretion rules already
described. For each point of the network we keep, besides its representative curve,
a record of the rotation matrix which produced the target curve involved in its
accretion. The seed and representative curves of the tree are stored as polygons
with a fixed number of vertices large enough to compute the distance accurately
and to permit adaptation to the curves of the target. That tree is computed
offline and stored to be used later in the demonstration part.

To test the ability of the search tree, we use a window and mouse and in-
teractively control the position of an instance of the polyhedron. Each time the
pose changes (we achieve real time) the outline is computed and sent to an
independent part of the program which searches the tree already stored. That
search produces the curve representing the shape which fits best the shape of
the outline curve, together with the angle of the plane rotation used for the fit.
Composing that plane rotation with the 3D rotation matrix stored with the best
fitting curve gives a rotation matrix estimating the pose to be found. The poly-
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Fig. 6. The binary tree grown on outline curves of a polyhedron (inner nodes only),
represented with some overlap. The curves correspond to branching points of the tree
grown with the second algorithm.

hedron is simultaneously displayed with that estimated pose in a second window
for visual assessment. A third window displays the outline curve and the fitted
tree curve to further evaluate the method. On a portable computer (Pentium
M, 1.8 GHz), five minutes permitted to grow a tree (fig. 6) with 430 leaves (av-
erage height : 10.05), after 5000 accretions (ε = 0.07, 100 vertices per curve).
That tree can then be used to recognize approximately, in real time, the poses
of the same polyhedron from the outlines of its projections, as demonstrable in
an interactive presentation. Allowing longer growing times leads to larger trees
and better precision.

5 Relations to Multi-resolution Methods

The shapes of the curves corresponding to the points used for accretions can
be monitored as the tree grows. The shapes can be seen (fig. 6 and fig. 7) to
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Fig. 7. First layers of the tree grown on outline curves of a polyhedron. The curves
correspond to branching points of the tree. Observe the progressive shape differentiation
from the root to the leaves.

progressively differentiate, starting from shapes close to that of the seed, toward
the various possible shapes in the target, i.e., the different possible outline shapes
of the polyhedron. These transformations look as a kind of reverse blurring and
call for a comparison with deep structure methods and other multi-resolution
procedures.

Shape differentiation of curves is observed for both algorithms but compar-
isons with blurring are probably easier with the second one. Going from the root
to one of the leaves, the evolution of the curve associated to the points of that
path in the tree is approximated (in the limit of a small epsilon) by the effect of
a vector field along the curve, averaging at each point of the curve the displace-
ment needed to reach the corresponding point on different curves of the target
once matched to it. After each branching, the set of curves averaged to build the
field along the current curve is split: it is the subset of the target to which the
current curve is assigned. Such averages on smaller and smaller disjoint sets be-
come more diverse with their respective sub-targets getting more homogeneous.
This leads to better matching and to the differentiation of the curves. The re-
verse path can thus be compared to a combination of interpolation (involving
the target) and some repeated local averaging on the target.

Applying these ideas to Image Analysis is a challenging program which can
involve different levels of complexity. A single image can be taken as a target to
build a tree towards it (a small ε making the tree more deterministic), but trees
can also target directly volumetric data or more general sets of images.

6 Conclusions and Prospects

An algorithm derived from abstract biological modeling (branching in general
spaces) could be used to address a concrete problem with very few changes.
Its modest performance in this first application has to be balanced with the
generality of it, since the only parts of the code specific to the problem addressed
were the distance function and the interpolation procedure. The same algorithm
permits so search a set of smooth curves like the sectional curves of a complex



168 Y.L. Kergosien

bone through all its intersecting planes [5]. There are also very few parameters
to choose as the results are not very sensitive to ε. Its low complexity might
make it or variants of it candidates for quick data exploration, dimensionality
reduction, or visualization, e.g., in the processing of genomic or biometric data.
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Abstract. Blurring an image with a Gaussian of width σ and consid-
ering σ as an extra dimension, extends the image to an Gaussian scale
space (GSS) image. In this GSS-image the iso-intensity manifolds behave
in an nicely pre-determined manner. As a result of that, the GSS-image
directly generates a hierarchy in the form of a binary ordered rooted tree,
that can be used for segmentation, indexing, recognition and retrieval.
Understanding the geometry of the manifolds allows fast methods to de-
rive the hierarchy. In this paper we discuss the relevant geometric prop-
erties of GSS images, as well as their implications for algorithms used
for the tree extraction. Examples show the applicability and increased
speed of the proposed method compared to traditional ones.

1 Introduction

When images are considered, they are always considered at some scale. Often
the focus is on single pixels - the so-called inner scale - in case of enhancement.
However, at the same time also intermediate structures - scales - are relevant,
since it is important to know if either noise or ’relevant data’ is enhanced. This
simple example illustrates the need of multi-scale image processing.

Since there exists a huge pile of possible multi-scale methods, it makes sense
to restrict to those that have a firm mathematical and reasonable axiomatic basis.
In the first group so-called test-functions are found, that transfer the discrete
data into the continuous domain [16]. In the latter group we prefer those axioms
stating that ’we know nothing of the image’ [5]. At the intersection of both, one
finds the well-known Gaussian filter.

When an image is blurred with a Gaussian filter, the scale (the width, or
variance of the filter) needs to be chosen. The Gaussian scale space paradigm
[2,6] states in contrast that no scale should be chosen in advance. The (n)−
dimensional image is thus extended to an (n + 1)−dimensional Gaussian scale
space (GSS) image.

Many results on the deep structure - the complete structure - of GSS im-
ages are reported, albeit that most results describe local situations, like neigh-
bourhoods of point-events like so-called catastrophe points [1] or saddle points
[3,10,11].
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Recently, novel results were reported in the use of GSS images. They contain
a hierarchical structure that can be used for a so-called pre-segmentation [11],
a topological segmentation of the image based on its extrema. Furthermore, a
binary ordered rooted tree can be extracted that represents the hierarchy [12].
A drawback of the extraction procedure as described in these papers, is their
need for (n + 1)−D region extraction. Since GSS images can be complicated,
the procedure is computationally expensive. Currently, these methods are in the
state of evaluating their relevance with respect to image indexing and retrieval,
as presented in [7].

In this paper we discuss the global geometrical structure of GSS images,
bridging the local events and the hierarchical tree structure and yielding a faster
method to derive the latter based on the former, using the geometry of iso-
manifolds in the GSS image.

2 Background

In this section we briefly review Gaussian scale space, its deep structure and the
hierarchy in the GSS image. For more details we refer to the literature mentioned
in this section.

2.1 Scale Space

Let L(x) be an image with x an n-dimensional spatial variable (point) and L
the intensity measured at the point. In order to transfer the discrete image to
the continuous domain, so-called test functions [16] are needed. Among those
functions, we choose that one that satisfies the constraints that it has no pre-
ferred orientation, size, location, and no memory. Finally, the function needs to
be separable for computational purposes [5]. As a result, one ends up with the
Gaussian filter [6,14]. Consequently, the Gaussian scale space image L(x; t) is
defined as the convolution of L with a Gaussian:

L(x; t) =
∫

Rn

1√
4πt

n e−
|x−y|2

4t L(y) d y

As one can verify, the Gaussian scale space image satisfies the diffusion equa-
tion: ∂tL(x; t) = ∆L(x; t) and limt↓0 L(x; t) = L(x). This is the result of an
other axiom: causality, as suggested by Koenderink [9]. It boils down from the
assumption that moving upwards in the GSS image no spurious details are cre-
ated, and thus implies that no new level lines are created. However, it is possible
that locally an extremum and a saddle are pair-wise created [1].

Generally, when blurring, structure disappears due to the pair-wise annihila-
tion of a pair of critical points. This concept automatically leads to the definition
of critical curves : one-dimensional strings through the GSS image that satisfy
∇xL(x; ti) = 0 for each fixed ti. Note that this is just a formal definition linking
critical points over scale. The linking respects the type of critical point (max-
imum, saddle, minimum), and, as Damon showed [1], at so-called catastrophe
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points a saddle part and a extremum part meet. These points are the local
extrema of the critical curve with respect to scale in the GSS image.

The critical points of the GSS image itself are always (scale space) saddle
points [3,10,11]. At these points the spatial and the scale derivative are zero.
The latter implies that the Laplacian is zero, given the diffusion equation.

2.2 Hierarchy

The concept of scale space saddles takes a prominent place in the hierarchical
structure proposed by Kuijper and Florack [11,12]. Two distinct iso-manifolds
(manifolds with the same intensity throughout the GSS image) are connected at
these saddles. Each critical curve can be related to a manifold, vice versa, and
each annihilating extremum can be related to a scale space saddle. So the saddle
relates two different critical curves, while both curves have a different maximal
scale location (the annihilation point). The first disappearing curve causes its
related manifold to be called critical.

In [11] a difference in the hierarchy based on the scale location of the disap-
pearance of a critical curve related to the critical manifold is advocated, whereas
in [12] the focus is changed to the location of the scale space saddle in the GSS
image. The manifold that was nameless is called dual in that paper. An example
is given in Figure 1. The left image shows two manifolds joining at the scale space
saddle. The critical curve through it also intersects the right manifold. At the top
of the curve an annihilation takes place involving the saddle part (left, through
the scale space saddle) and an extremum part (right, intersecting the manifold
at its top). Therefore, the right manifolds is called critical. Consequently, the
left manifold is called dual. Note that this manifold is also intersected at the
top by an (other) critical curve. The right image shows the corresponding tree
structure. The scale space saddle SSS is a node with two children: the critical
curve determined by critical manifold, edge C and the critical curve determined
by the dual manifold, edge D. The edge to its parent P is formed by the critical
curve determined by dual manifold. The parent is either the root, or another
scale space saddle. In the latter case is the edge either labeled C or D.

3 Geometry

In this section we describe the global structure of iso-manifolds in GSS and relate
it to the scale space saddles, as well as the hierarchical structure. We will focus
on 2D images and 3D GSS images for visualization purposes, but the results
hold in arbitrary dimension.

3.1 Manifolds

From the definition of a GSS image itself it is clear that ’all things blur away’.
As proven by Loog et al. [15], if the image is padded with zeros (it has infinite
support), all critical points stay within the original image (the hull), while at
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D C

SSS

P

Fig. 1. a) A critical and a dual manifold joined at a scale space saddle. b) Building
block of the tree structure.

some scale only one extremum remains. Theoretically, at infinite scale all in-
tensities have spread out equally over the image with infinite support, i.e. the
average intensity converges to zero. The importance of this result is that there
is a scale at which there is only one extremum left in the blurred image.

At this scale in the blurred image, the isophotes form closed curves that can
be traced downwards, while the single point forming the extremum forms the
top of a dome-shape. What is within this dome cannot be reached given this
blurred image [9].

Alternatively, given an arbitrary n−D iso-manifold in the (n + 1)−D GSS
image, if it intersects an extremum it must intersect it at the top of a local
dome (the maximal scale at which the manifold locally exists). Obviously, the
manifold can have multiple local tops, although they are located at different
scales - just like an arbitrary 1D function generically has extrema with different
values. Furthermore, in the GSS image there is exactly one global top: at that
scale the manifold is reduced to an extremum and when scale is increased the
manifold disappears.

Consequently, in the GSS image all iso-manifolds are only open at the original
image. So for n = 2, all 1 − D isophotes in the original 2 − D image converge
at some scale to circles and disappear when increasing scale. Note that this
does not have to happen immediately, as pointed out by Lifshitz and Pizer [13].
They reported the change in curves from non-intersecting to intersecting. This is
due to the global structure of iso-manifolds in the neighbourhood of scale space
saddles, as will be shown in the next section.

Finally - but perhaps most important, it should be noted that the causal-
ity principle states the there are no new level lines - isophotes created when
increasing scale. This implies that in the GSS image it is impossible that an iso-
manifold is completely closed (i.e. closed from below). It must have an open end
towards the original image. As a result, each isophote at some scale is present
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in the original image and the critical points in the GSS image are saddle points.
So it remains to investigate the global structure of iso-manifolds through these
points.

3.2 Saddles

At spatial saddle points, generically two parts of a manifold are joined or split
[3]. For example, one can think of a pair of trousers (join) or the two humps of
a camel (split). More special are the scale space saddle, at which two parts have
one contact in one point - at least locally [11].

However, only local information of the scale space saddle environment is
insufficient: The two parts having contact may be indeed two iso-manifolds that
do not share any other common point(s), but they may as well be one and the
same manifold. If the latter case applied, the saddle is called ’void’ according to
[11]. This paper gives a closed definition to distinguish between the two cases,
essential to build the hierarchy.

3.3 Contact at Saddles

The first item to be addressed is the contact at a scale space saddle. It is com-
monly said that two manifolds are touching, but this might give the wrong
impression. Since the scale space saddle is also a spatial saddle, the isophote
in the blurred image through the (scale space) saddle is self-intersecting. This
intersection is transversal - there is a non-zero angle between the crossing parts.
The two parts bounded by the isophote have a peak and are not isomorphic to a
circle. So instead of two spheres touching at the scale space saddle, there are two
peaks joined at a single point, see Figure 1a. The manifolds with a small differ-
ence in intensity divide in two cases. The first case yields (locally) two manifolds
that do not (locally) intersect. The second case consists of one manifold that is
tunnel-shaped around the scale space saddle.

3.4 Global Structure at Saddles

The second item to take into account is the types of critical curves involved.
When two distinct manifolds are considered, there are two critical curves that
intersect the manifolds at their tops. These critical curves can be either of the
same type (both containing either minima or maxima), or of different type (one
containing a minimum and one containing a maximum). Visualization of both
types can be made easier when regarding the blurred image and the isophote
through the (scale space) saddle.

Type 1: same types of critical points. If both curves have the same type, the
(scale space) saddle is placed ’in between’ both extrema: a ’common’ eight-figure
appears. In the GSS image the two iso-intensity manifolds are two juxtaposed
peaky kissing domes, the result of two locally dome-like shapes approaching each
other, see Figure 2a.
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Type 2: different types of critical points. In case of an scale space saddle
joining a maximum and a minimum curve, on extremum, say the minimum, is
placed in between the saddle and the other extremum (thus being the maximum).
This relates to a wrapped eight-figure, where one part lies inside the other. In
the GSS image the minimum-related part of the manifold kisses the outside part
of the maximum-related part of the manifold, see Figure 2b.

Fig. 2. a) Extrema are of the same type: two juxtaposed domes. b) Extrema are of
different types: one dome inside the other. c) What will be the geometry of the dual
and critical manifolds?

4 Avoiding 3D Region Growing

Once having obtained the critical curves, the scale space saddles and their rela-
tions, there are two major time–consuming things to do (see also Figure 2c).

Firstly, it needs to be determined how the manifolds are shaped at the original
image. This is non-trivial, since the manifold may be ’trousers-like’, giving rise to
(at least) two distinct isophotes in the original image. So a global investigation is
needed to find the correct form of the dual manifold. This is depicted in Figure
3. The left images show an intersection of the GSS image in the (x, t) plane,
with x such that the two scale space saddles (the dots) are in the intersection
plane. The continuous curves show the dual and critical manifolds (with D and
C labels), the dashed curves represents the critical curves (with extremum e and
saddle s branches), and the horizontal dashed line is the image at a scale with a
scale space saddle (on s2). The resulting tree structures are shown on the right.
Both scaled images contain regions around the extrema e1, e2, and e3. The latter
is part of the critical manifold, but for the dual manifold one can see that the
top row image has only e2 as dual part, while the bottom row image has also
the e1 as part of the dual manifold.

Secondly, it needs to be determined what the top of the dual manifold is, or,
in another way, to which other critical curve the saddle is related. This is essential
for the linking in the tree. In [12] the authors propose a 3D-region growing with
the scale space saddle as seed point. This clearly solves the problem, but the
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Fig. 3. Two scenarios with the same image thresholded at the intensity of the scale
space saddle. See text for details.

shape of manifolds may make this a very time-consuming method. We propose
a different method to overcome these problems.

4.1 Top-Finding

To find the top of the dual manifold, it suffices in most cases to find the extrema
in the blurred image that are encapsulated by the isophote through the (scale
space) saddle. Since the saddle is connected to one extremum in a critical curve,
it is clear which of the two areas contribute to the inner part critical manifold.
Taking the other part, one finds at least one extremum. If there are multiple
extrema, then their intensities along the critical curve are known. So also the
intensity of the scale space saddle is located on at least some of these curves.
Then it suffices to take the extremum with that intensity that has the highest
scale value, i.e. the one located highest in scale. This is the top of the dual dome
and the extremum belongs to the critical curve related to that related to the
critical manifold. This is the case in Figure 3, top row. The isophote contains
the extrema e3 and e2. Since the first one vanishes with branch s2 (containing
the scale space saddle), it is part of the critical manifold. The latter extremum
has an intensity equal to that of the scale space saddle, where it intersects the
dual manifold.

It may happen that the curve doesn’t contain the intensity. Then it is involved
in a second scale space saddle elsewhere. Then the same procedure is taken
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for this extremum and the curves link to the dual manifold determined by the
last scale space saddle This is the case in Figure 3, bottom row. The isophote
contains (again) the extrema e3 and e2. Since the first one vanishes with branch
s2 (containing the scale space saddle), it is part of the critical manifold. The latter
extremum doesn’t have an intensity equal to that of the scale space saddle, but
vanishes before it can intersect the manifold determined by the intensity of the
scale space saddle. It therefore is a critical manifold, linked by its scale space
saddle to extremum branch e1, being the dual part. Therefore also e3 is to be
linked to this branch. Branch e1 intersects both manifolds given bye2 and e3.
The ordering follows by the intensities of these manifolds.

This is sufficient to derive the tree structure, since critical curves can only es-
cape manifolds through their tops. To find the segments (bounded by isophotes)
in the image related to each critical and dual manifold, one needs to follow the
next procedure.

4.2 Region Shrinking / Sub-tree Selections

Given the root of the tree (the remaining extremum in the GSS image), one also
has its intensity. Since this forms the top of some dome in the GSS image that
has an open end at the original image, one can just trace from the boundary
of the original image padded with zeros (containing being thus the ’isophote’
with value zero) inwardly until the desired intensity is reached. Note that this
cannot cause the isophote to be spilt, since all extrema but the remaining one
are located within this region1.

While going down in scale, one finds at one moment the first node, the scale
space saddle at which a critical manifold was connected to the remaining ex-
tremum. This relates to shrinking the isophote in the original image to the first
isophote(s) with the intensity of the scale space saddle. This time, splitting of
isophotes in the dual part is possible due to the ’trousers’ event. In the critical
manifold part, there is exactly one isophote. Obviously, inside the isophote an-
other isophote with the same intensity may occur due to the presence of other
extrema.

The simple procedure is justified by the causality principle, regarded down-
wardly in scale: no level lines (isophotes) disappear.

From the tree point of view, this is just selecting the left sub-tree at a node
being the dual manifold, and the right sub-tree as the critical manifold. Return-
ing to Figure 3 again, the top row tree simply gives for e2 the region around e1

as dual and the regions around e2 and e3 as critical, since the top node defines
the left and right sub-trees. For e3 it is just e2 as dual and e3 as critical. The
bottom row tree gives a different result. Now for e2, e1 is the dual part and e2

the critical part, while for e3 the dual part is obtained by e1 and e2.

1 We consider generic images, so binary images are excluded. All non-generic images
can be made generic by adding infinitesimal perturbations.
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5 Examples

In this section we elaborate on the presented method based on the images given
in Figure 4. The blob image is obtained by adding up four Gaussian blobs with
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5 1
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4 1
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6 7
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5 6

Fig. 4. Testimages a) artificail blob image with labels on critical points. b) MR image
c) MR image at scale 8.37 with labels on critical points.

different intensities. In this way numerical calculations can be verified analyt-
ically. For computation, the function is sampled into a 81x81 image with 80
scales logarithmically sampled. The MR image has dimensions 217x181. Since it
contains over 4000 critical points, as starting image the one at scale 8.37, shown
in Figure 4c, is taken. For this image 89 scales are computed. These images
were also used in [12], but that paper provides the dual and critical manifolds
obtained by the 3D region growing method.

For the blob image the critical curves and the image thresholded at the
intensity of the scale space saddles are shown in Figure 5. To verify the final
results, Figure 6 shows the manifolds through the scales space saddles.

Comparing both figures, it is clear that the image at the scale of the scale
space saddle (Figure 5) doesn’t contain sufficient information. For extremum e2

the extrema e3, e4, and e5 are in the dual part (b), while for extremum e3 only
e4 is in the dual part (c) - while there is a part of e5 visible. For e5 both e3 and
e4 are in the dual part (d) - and e3 isn’t even present anymore at this scale. This
is not obvious at all from Figure 5, but it is clear given the complete manifolds
(Figure 6) .

However, the top-finding procedure returns e4 as critical curve intersecting
the dual manifold at the top in all cases. Next, when building the tree, the scale
space saddles are ordered in their intensities. Tracing downwardly from the root,
firstly the extremum e1 is found generating a critical manifold. Note that this
is a situation of different types of extrema (Figure 2b). Secondly, e2 is split off,
next e5, and finally e3.

The region shrinking procedure then finds the sequence shown in the top
row of Figure 7. Here black regions denote the parts belonging to the critical
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Fig. 5. Successive scale space saddles as scale increases with the intensity threshold at
the intensity of the scale space saddle. a) e1 b) e2 c) e3 d) e5.

Fig. 6. Manifolds in GSS with the intensities of the scale space saddles, sorted on the
intensities of the scale space saddles. a) e1 b) e2 c) e5 d) e3.

e5e4 e1e3 e2

e7 e5e6 e4e1e3 e2

Fig. 7. Regions and trees for the blob (top row) and MR image (bottom) found by the
shrinking / sub-tree search method. Black: critical, White: Dual.

manifold, while white regions denote the parts belonging to the dual manifold.
Firstly the minimum e1 is found (top left): a black region within the white (the
wrapped eight figure). Secondly, within the white regions the shrinking takes
place and e2 is found as critical (top right), while the parts around the other
maxima are part of the dual manifold. These two images still relate to the top
rows of the Figures 5 and 6.

The next one that is found is extremum e5 (bottom left) with e3 and e4 as
part of the duals. Although this is clear from Figure 6 bottom left, it contradicts
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the intuition suggested by Figure 5 bottom right. This again warns that scale
space is not trivial at all.

Note that these results are identical to the “ground truth” as given in [12].
This holds also for the MR image results, the bottom row of Figure 7. Here
the images are derived from the sub-tree search. For example, the first image
obtained C(e1) as the union of regions around e1, e2, and e3, and D(e1) as the
union of regions around e4, e5, e6, and e7, since the scale space saddle related
to e1 is the top node in the tree (see also [12]). This scale space saddle is of type
2, combining different types of critical points.

The main computational gain is given in Table 1. Although the running times
are given for non-optimized code, the differences are clear.

Table 1. Running times of the 2D and 3D region grow algorithms in seconds

blobs MRI
extremum 1 2 3 5 4 6 5 3 1 2
2D 0.470 0.311 0.280 0.291 1.021 0.601 0.551 0.721 0.371 0.721
3D 54.178 61.729 37.614 54.999 2360.1 649.183 731.281 354.98 238.694 522.01

6 Summary and Conclusions

In this paper we discussed the geometry of manifolds in Gaussian scale space im-
ages. We clarified the local behaviour at the scale space saddles and distinguished
between two essentially different kinds of interactions of manifolds at scale space
saddles. Furthermore we showed what the global structure of manifolds in GSS
images looks like and how it can be used.

This links the known local events in Gaussian scale space with the global
hierarchy and segmentation method proposed in [11,12]. This method relies on
an (n+1)−dimensional region growing procedure to find relevant structures (i.e.
the geometry of certain manifolds) and can be heavily time consuming.

Using the presented investigation of the geometry of GSS images, a region
growing algorithm in the full GSS image in order to find the tree structure,
can be avoided. It suffices to do a region growing on the scaled image only, in
combination with a linear search along critical curves to find the hierarchy tree.
Furthermore, a locally (n − 1)−dimensional manifold shrinking in the original
image, or (equivalently) a sub-tree search and region expanding around the found
leaves, suffices to derive the segmentation of the image.

The presented examples showed the much faster running times to derive the
tree structures and segmentations. Therefore the algorithms get a significantly
less complexity, enabling faster use in image recognition and comparison as pre-
sented in e.g. [7].
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Abstract. This paper clarifies the nature of hierarchical relationships
among singularities in the Gaussian scale-space. The hierarchy of the
singular points is essentially provided by ‘stationary curves’ and flux
curves of ‘figure field’. They are defined, respectively, as the trajectories
of stationary points across scale, and as the gradient field of the scale-
space image at fixed scale. The figure field also reveals an important fact
that a stationary point at infinity is involved in catastrophe events of
local minimum points. These mathematical properties define the scale-
space hierarchy, which is qualitatively described as a tree.

1 Introduction

The aim of this paper is to clarify the hierarchical structure of image by math-
ematical statements in scale space. The scale space treats images at all levels
of resolution, simultaneously. The resolution of the image governs accuracy and
cost of quantitative estimations in the computer vision, such as motion detec-
tion, reconstruction of objects, etc. Therefore, we require a priori knowledge of
necessary and sufficient resolution to employ the quantitative estimations. In
other words, the scale selection problem is inevitable.

The scale-space hierarchy is one of the important qualitative properties of
image, which provides us with hierarchical approach to the scale selection prob-
lem. We focus on the hierarchical structure implied by the Gaussian scale-space
in this paper. We firstly review the Gaussian scale-space theory to present the
importance of some concepts: stationary curves, figure field, and a local mini-
mum point at infinity. Secondly, we propose the scale-space tree which describes
non-heuristic hierarchical structure of image. We also present temporal segmen-
tation of motion image as a potential application of the proposed scale-space
tree.

2 Theory

2.1 Gaussian Scale-Space

The Gaussian scale-space analysis of images goes back to Iijima [1,2,3,4,5],
who introduced the Gaussian convolution as the fundamental transformation
of images based on the following axioms: (i) nonnegative intensity, (ii) linearity,
(iii) scale invariance and closedness under affine transformations, (iv) semigroup

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 181–192, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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property, and (v) rotational invariance. In 1983, Witkin published a paper on
scale-space filtering, and pointed out the importance of the Gaussian filtering in
image processing [6].

We define the Gaussian scale-space image as follows.

Definition 1. The Gaussian scale-space image f(x, τ), (x, τ) ∈ (R
N
,R

+
), is

the convolution of the N -dimensional original image f(x) ≥ 0 with the isotropic
Gaussian kernel G(x, τ):

f(x, τ) = G ∗ f, G(x, τ) =
1

√
4πτ

N
exp
(
−|x|

2

4τ

)
. (1)

Here R
N

denotes N -dimensional extended real space, which includes a point at
infinity.

Note that the Gaussian scale-space is defined in compactified real scale-space in
this paper. The point at infinity plays an important role in deriving consistent
scale-space hierarchy.

In 1984, Koenderink suggested the mathematical equivalence between the
Gaussian filtering and the linear diffusion equation, or the partial differential
equation of the parabolic type [7].

Proposition 1. The Gaussian scale-space image f(x, τ) satisfies the linear dif-
fusion equation

∂τf = ∆f. (2)

In advance of the above arguments, Iijima derived the linear diffusion equa-
tion from physical principles regarding the scale-space image f(x, τ) as an energy
density distribution [3]. On the analogy of the energy density flow, Iijima defined
the figure field or the vector field of the figure flow.

Definition 2. The figure field F is defined as the negative of the spatial gradient
vector field of the scale-space image:

F = −∇f(x, τ). (3)

Definition 3. The figure flow curve is the directional flux curve of the figure
field.

Since the figure field is considered as the current density flow of image intensity,
the figure field satisfies the continuity equation.

Proposition 2. The figure field F satisfies the following differential equation.

∂τf +∇�F = 0. (4)

Proof. Equation (4) is directly obtained from (2) and (3).  !

The following proposition is the conservation law of image intensity.
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Proposition 3. Let S ⊂ R
N−1

denote a simple closed supersurface which en-
circles an arbitrary volume V ⊂ R

N
. The net outward flux of the figure field

crossing S is the rate of total loss of image intensity in V with respect to the
scale.

Proof. Set n to be the unit normal vector to S. From (2), (3) and the Gauss
theorem, the net outward flux is calculated as∫

S

F�ndS = −
∫

S

∇f�ndS = −
∫

V

∇�∇fdV = −∂τ

∫
V

fdV. (5)

The last notation in (5) states the derivative of total loss of image intensity in
V with respect to the scale τ .  !

Equation (5) is the integral form equivalent to (4).

2.2 Stationary Points

A remarkable feature of the image at fixed scale is a set of stationary points of
f(x, τ). The stationary points are defined as follows.

Definition 4. The stationary points are defined as the points where the spatial
gradient vanishes:

{x | ∇f(x, τ) = 0}. (6)

The stationary points of N -dimensional (N > 1) scale-space images are classified
into three types; local maximum points, local minimum points and saddle points.
At the regular points where the determinant of the Hessian matrix of f(x, τ)
is non-zero, the types of stationary points can be discriminated by the second
derivative of f(x, τ), that is, the second derivative test. Since the directional
derivative of f(x, τ) in the direction of a unit vector n is calculated as

dnf = n�∇f, (7)

the second directional derivative of f(x, τ) can be written in the quadratic form,

d2
nf = n�∇(n�∇f) = n�Hn, (8)

where H = ∇∇�f is the Hessian matrix. Equation (8) implies that the maxi-
mum and minimum values of the second directional derivative d2

nf are the max-
imum and minimum eigenvalues λmax and λmin of H, respectively.

λmin ≤ d2
nf ≤ λmax. (9)

The eigenvalues of H and corresponding eigenvectors are called the principal
curvatures and the principal directions, respectively. The principal curvatures are
obtained by the second directional derivation in the principal directions. The
function f(x, τ) is said to be convex if the second directional derivative d2

nf is
positive for any direction of n. Analogously, f(x, τ) is concave for negative d2

nf .
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The local maximum (minimum) points are the stationary points at the concave
(convex) points. That is, λmin > 0 at the local minimum points and λmax < 0
at the local maximum points. The other stationary points are classified as the
saddle points.

Since the scale-space image f(x, τ) is a superposition of the Gaussian func-
tion, the local maxima and minima are representatives of dominant parts of
bright objects and cavities in the image, respectively. In the sense of the cur-
rent density flow of image intensity, the local maxima and local minima are
sources and drains of the flow, respectively. The local maxima and local min-
ima are start-points and end-points of the figure flow curves. It is trivial that
F = −∇f �= 0 at any point x in the vicinity of an extremum, and we can draw
a figure flow curve which passes through the point x in the direction of F unless
x is the extremum itself.

We also recognise the existence of a stationary point at infinity.

Proposition 4. A point at infinity is a local minimum.

We can visualise the point at infinity with the stereographic projection. Fig-
ure 1 illustrates the one-to-one correspondence between the space x and the
Riemann sphere under the stereographic projection. We see that any small dis-
placement from the point at infinity (the pole N) increases the image intensity
at corresponding point in the image. The local minimum point at infinity can
be regarded as a representative of the dark background of the positive image.
Since the scale-space image f(x, τ) is positive, the point at infinity is a drain of
the figure flow from the whole region of the image.

N

P′

P

O

Fig. 1. Stereographic projection onto the Riemann sphere. The pole N corresponds to
the point at infinity, which can be regarded as a local minimum point.

The saddle points appear on ridge-like and trough-like structures in two-
dimensional images. According to the sign of the Laplacian ∆f(x, τ), we can
distinguish the saddle points as the ridge-like (∆f < 0), trough-like (∆f > 0),
and balanced saddle (∆f = 0) [11]. The balanced-saddle is also known as scale-
space saddle [12].

2.3 Stationary Curves

The stationary curves are of great importance to the investigation of the scale-
space hierarchy.
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Definition 5. The stationary curves are the trajectories of stationary points in
the scale space.

The stationary curves are also classified as local maximum curves, saddle curves,
and local minimum curves according to the second directional derivation in the
same fashion as the classification of stationary points.

One of the local maximum curves is connected to the one remaining local
maximum point at the coarsest scale. We call this local maximum curve “trunk
curve”. It is also notable that the local minimum point at infinity resides at any
scale. That is, the collection of local minimum points at infinity can be regarded
as the local minimum curve at infinity.

Generally, the sign of the Laplacian depends on the sum of eigenvalues of the
Hessian matrix.

∆f = trH = tr(V ΛV �) =
∑

i

λi, (10)

where V is the square matrix whose column vectors are eigenvectors of H, and Λ
is the diagonal matrix of eigenvalues λi. Since the sum of the eigenvalues is nega-
tive (positive) at the local maximum (minimum) points, the image intensities on
the local maximum (minimum) curves decrease (increase) with increasing scale.
By the same token, the image intensities on the saddle curves with negative (pos-
itive) Laplacian decrease (increase) with increasing scale. For two-dimensional
images, the image intensities on the saddle curves composed of the ridge-like
(trough-like) saddle points decrease (increase) with increasing scale.

The stationary curve is described as a one-dimensional manifold x(τ) in
the scale space. Zhao and Iijima [8] showed that the stationary curves are the
solutions to the system of differential equations.

Proposition 5. The stationary curves are the solutions to the equation

Hẋ = −∇∆f, (11)

where the dot indicates ordinary differentiation with respect to scale τ .

Proof. From the total differential equation of f(x, τ) at the stationary points
{x(τ)|∇f = 0}, we have

Hẋ +∇∂τf = 0. (12)

Substituting (2) into (12), we can derive (11).  !
The endpoints of the stationary curves are the singular points where detH =∏

i λi = 0, that is, at least one of the eigenvalues is zero. This property implies
that the local maximum/minimum curve and saddle curve share the singular
point as their endpoint. Note that the stationary points necessarily have the
Laplacian ∆f with a same sign at the singular point.

Proposition 6. The maximum (minimum) curve and the saddle curve with
negative (positive) Laplacian can share a singular point as their endpoint.

This property was suggested by Griffin et al. [11] for two-dimensional images; a
ridge-like saddle point cannot annihilate with a minimum point, and a trough-
like saddle point cannot annihilate with a maximum point.
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3 Hierarchy

In this section, we consider connectivity of the stationary points across scale
and at fixed scale. We firstly discuss that the stationary curves imply the hi-
erarchical relationships across scale. The stationary curves, however, does not
completely clarify the scale-space hierarchy. Therefore, it is essential to study
the connectivity at fixed scale. We show that the annihilation point is connected
to a nonsingular stationary point at the annihilation scale. Such a nonsingular
point can be found by tracing a unique figure flow curve from the annihilation
point in zero principal curvature direction. Secondly, we introduce the local min-
imum point at infinity in order to define consistently the scale-space hierarchy.
Finally, we propose the scale-space tree which explicitly describes the hierarchy.

3.1 Connectivity Across Scale

As the scale parameter increases, the image is simplified and the features of the
image are reduced. The number of stationary points in the diffused image f(x, τ)
decreases when the different types of stationary points meet and annihilated at
the singular point, and only one maximum point remains at the coarsest scale.

The behaviour of stationary points is described as the stationary curves in the
scale space. Since the saddle points are always involved in the annihilations and
creations of the stationary points [11,12], the different types of stationary curves
share the singular point as their endpoint. Some singular points are connected
by the stationary curves to the other singular points in higher scale. Therefore,
the stationary curves imply the hierarchical relationships among singular points
across scale.

In order to express this implicit hierarchy as a tree, we regard the singular
points as nodes of the tree. The leaves of the tree are the stationary points at
the finest scale. The branches of the tree represent the connections between the
stationary points and singular points. However, the singular point at which the
stationary points are annihilated does not always have the connection by the
stationary curve to the singular point in higher scale.

3.2 Connectivity at Fixed Scale

In the previous section, we introduce the equation of stationary curve. Equa-
tion (11) gives the instantaneous velocity of the stationary points in the space
with respect to the scale. Transforming the coordinates into the principal axis
coordinates of H, we obtain from (11)

ṗ(τ) = −Λ−1∇p∆f, (13)

where p(τ) = V �x(τ), and ∇p = V �∇ is the gradient operator in the principal
axis coordinates.

Equation (13) shows that the third derivatives are weighted by the reciprocal
eigenvalues of H . Recall that we have the zero eigenvalue at the singular point.
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This indicates that the velocity component corresponding to the zero principal
curvature becomes infinite at the singular point. In other words, the velocity of
the stationary point is infinite in the direction of the zero principal curvature at
the annihilation scale.

It has been shown that Fold catastrophes describe generic annihilation events
[14,15,16]. In the principal axis coordinates, the annihilation event is modelled
as

f(p, τ) = p3
1 + 6p1τ +

N∑
i=2

γi(pi + 2τ). (14)

where
∑N

i=2 γi �= 0 and ∀γi �= 0. For N -dimensional (N > 1) images, it suffices
to consider the events in two-dimensional case

f(p1, p2, τ) = p3
1 + 6p1τ + γ(p2

2 + 2τ). (15)

This model of scale-space image f(p1, p2, τ) has a local maximum point and a
saddle point if τ < 0 and γ < 0. These two stationary points meet at the origin
at τ = 0. The parameterised stationary curves are obtained from (13) and (15)
as

p(τ) = (±
√
−2τ, 0)�, (16)

where the upper and lower signs correspond to the saddle curve and local max-
imum curve, respectively. The principal curvatures (λ1, λ2) are (

√
−2τ, 2γ) on

the saddle curve and (−
√
−2τ, 2γ) on the local maximum curve. Therefore, the

zero principal curvature direction at the annihilation scale τ = 0 is in the p1-axis.
Another significant aspect of the annihilation event is evolution of the figure

field. Noting that ∇p = V �∇, it follows from (3) and (15) that

F = −(3p2
1 + 6τ, 2γp2)�. (17)

A family of figure flow curves p2 = C(p1) is derived from the differential equation,

dp2

dp1
=

∂p2f

∂p1f
. (18)

The solution to (18) for f(p1, p2, τ) is

p2 =


A

∣∣∣∣p1 −
√
−2τ

p1 +
√
−2τ

∣∣∣∣
γ

3
√−2τ

(τ < 0)

A exp
(
− 2γ

3p1

)
(τ = 0)

A exp
(

2γ
3
√

2τ
tan−1 p1√

2τ

)
(τ > 0)

(19)

Figure 2 plots the figure flow curves before (τ < 0), after (τ > 0), and at
(τ = 0) the annihilation event of the local maximum point M and the saddle
point S. The annihilation point P is called a shoe point because of the shape of
the surface [11,13]. The shoe point has outward figure flow curves, but only one
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Fig. 2. Surface plot of f(p1, p2) and corresponding figure flow curves (a) before, (b) at,
and (c) after the Fold catastrophe event

inward figure flow curve is found. Here we call it “anti-directional figure flow
curve”. We clearly see that the anti-directional figure flow curve coincides with
the zero principal curvature direction, that is, p1-axis.

Let us observe the anti-directional figure flow curve in a global region of
image at the annihilation scale. Figure 3(a) illustrates the annihilation of local
maximum and saddle. The anti-directional figure flow curve reaches the shoe
point P along the “instep” of the shoe. The anti-directional figure flow curve
connects the shoe point P to another maximum point Q as the source of the
flow. Therefore, the maximum point Q can be considered as the parent node of
the annihilation point P. Since the ridge-like saddle point appears between the
local maximum points, the anti-directional figure flow curve always connects the
annihilation point of one local maximum to the other local maximum.

3.3 Connectivity to the Point at Infinity

The generic annihilation events of local minimum point and the saddle point can
be also described as the Fold catastrophes when we take γ > 0 in (15). It can
be deduced that the stationary point as the parent of annihilation point of the
local minimum and trough-like saddle is always the minimum point.

However, we cannot always identify the stationary point as the parent of
annihilation point in the finite domain of image. Figure 3(b) shows such a case
of the annihilation event. The annihilation point P in Fig. 3(b) has inward figure
flow curves, but only one outward figure flow curve is found as the anti-directional
figure flow curve. The outward figure flow curve reaches the boundary of the
region of image.
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P

Q

(a)

P

(b)

Fig. 3. Figure flow around annihilation points. (a) The shoe point. The anti-directional
figure flow (solid line) penetrates into the shoe point P, which leads to a maximum point
Q as the source of the flow. (b) An annihilation point P of a local minimum point and
a saddle point. The anti-directional figure flow (solid curve) from P does not have a
drain in the region.

This example suggests that the annihilation point like this case is linked to a
drain of whole image intensity, that is, a local minimum point at infinity. Since
the image f(x, τ) is defined in the infinite domain, all of the outward figure flow
curves from the whole region of the image, including the anti-directional figure
flow curve, are considered to converge at the local minimum point at infinity.

Furthermore, we presume that the local minimum point at infinity is annihi-
lated with one remaining maximum point at infinite scale. At the infinite scale,
the scale-space image f(x, τ) is completely flat and no stationary point is found.
This concept allows us to connect the remaining maximum curve to the local
minimum curve at infinity.

Consequently, the annihilation points of the maximum points are linked to
the other local maximum points via anti-directional figure flow curves at the
annihilation scales. The annihilation points of the minimum points are linked
to the other local minimum points including a local minimum point at infinity.
When we observe the stationary point with decreasing scale from the coarsest
scale, a first local minimum point is generically linked to the local minimum
point at infinity.

3.4 Scale-Space Tree

The hierarchical relationships among the annihilation points are described as a
tree. The root of the tree is a virtual annihilation point of the local minimum
point at infinity and the remaining maximum point at infinite scale. The nodes
of the tree are annihilation points. Stationary points which are connected to the
annihilation points by the anti-directional figure flow curves are also selected as
the nodes of the tree. Some nodes may be the points at infinity. The leaves of the
tree are the stationary points at the finest scale, including the local minimum
point at infinity. The branches indicate the connections between the nodes by
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the stationary curves across scale and the anti-directional figure flow curves at
fixed scale. Thus, the figure field and stationary curves define the scale-space
hierarchy.

4 Application

We demonstrate the classification of two-dimensional images, using a rotating
box sequence [17]. The sequence consists of 29 frame images, in which the box
with rectangular faces rotates from left to right. Since the frame images display
the dark box in bright background, we analyse negative images of the original
frame images. The scale-space tree is constructed for each frame image. Note
that we omit some branches which do not concern any topological changes of
the tree throughout the sequence.

F1 T R R Inf.

F1 F2 T F T Inf.

F1 F2 T T F Inf.L

L T F2 T F Inf.F1

Fig. 4. Groups of images and corresponding scale-space trees of rotating box. The first
row: the 1st to 11th frames, the second row: the 12th to 19th frames, the third row: the
20th and 21st frames, and the fourth row: the 22nd to 29th frames. The open circle,
filled circle and crossed circle indicate local maximum, local minimum, and saddle
point. Inf. indicates the local minimum at infinity.
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scale scale

O O

21st 22nd

Fig. 5. Switch of the trunk curve between the 21st and 22nd frames. The stationary
curves are plotted in (x, y, τ ) scale space, where O indicates the top-left of the image.

Figure 4 shows the frame images and resulting scale-space trees. The im-
age sequence is segmented into four groups of frames according to three major
transitions of the tree observed in coarse scale. In the first transition, nodes of
the annihilation points of extrema R corresponding to the right face of the box
disappear from the tree at 11th frame. Instead, a new local minimum F, T and
a local maximum F2 uprise in the front face and top face of the box. A local
minimum L representing dark pieces in the left face appears in the second tran-
sition at 20th frame. The front face of the box is dominant in the 12th to 19th
frame images. The third transition is a switch of local maximum curves between
the 21st and 22nd frames. The trunk curve switches the connection from the
local maximum point in the front face to that in the left face, see Fig. 5. This
indicates the shift of weight center of image intensity due to the appearance of
the left face.

As a result, temporal segmentation of the motion image of the rotating box
is achieved based on the scale-space hierarchy. In this experiment, several lev-
els of scale-space tree are enough to detect the critical frames of the appear-
ance/disappearance of faces, and the transition of dominant part of the box in
the motion image.

5 Conclusions

We showed that the stationary curves across scale and the figure field at fixed
scale define the scale-space hierarchy. The scale-space tree has two types of
nodes: the annihilation points and additional local extrema. The local extrema
selected as the nodes are linked to the annihilation points by the anti-directional
figure flow curves, of which directions coincide with the zero principal curvature
directions at the annihilation points. A local minimum point at infinity can be
involved in the annihilation events of local minimum point. The point at infinity
is connected to a remaining maximum point at infinite scale.

The scale-space tree is a powerful tool to classify the images. We demon-
strated temporal segmentation of motion image as a potential application. The
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sequence of images is segmented into groups based on the hierarchical struc-
tures of frame images. This temporal segmentation scheme is non-heuristic, non-
model-based, and is performed without any quantitative estimation such as edge
extraction, motion estimation, etc.
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Computing 3D Symmetry Sets; A Case Study�
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Abstract. In this paper we discuss the implementation of methods to
derive 3D Symmetry Sets, given a parameterized shape, as well as an
unorganized point cloud. It presents a geometric method to derive the
Symmetry Set, that is an extension of the one given in [6]. Although the
mathematics is a simple extension of the 2D case, the visualization, nu-
merical computations and their stability are much more complicated. An
example is given by means of an ellipsoid. In this example the Symmetry
Set can be computed exactly and results can be compared to the ground
truth.

1 Introduction

Although there has been no publication on 3D Symmetry Sets (yet), there has
been published quite a lot of work on deriving and presenting the Medial Axis in
3D. Most of the geometrical approaches that incorporate knowledge of possible
and allowed transitions is due to Leymarie proposing a method to derive the
Medial Axis in 3D [8,7,9], as well as Kimia and Giblin, who give a formal classi-
fication of the Medial Axis points [3] and transitions [2] Also Voronoi diagrams
to detect the skeleton, in combination with ridges for additional information,
have been reported [4].

In this work we consider shapes in 3D. These shapes are considered to be
closed 2D manifolds that allow a parameterization for the purpose of computing
the Symmetry Set by the standard definition introduced by Bruce, Giblin and
Gibson [1].

Let L(x, y, z) = 0 define implicitly a shape. Then its Gaussian surface cur-
vature K and Mean surface curvature H (Koenderink, [5], p. 515) are given
by

K = L2
xLyyLzz+L2

yLxxLzz+L2
zLxxLyy

(L2
x+L2

y+L2
z)2

H =
L2

x(Lyy+Lzz)+L2
y(Lxx+Lzz)+L2

z(Lxx+Lyy)

2(L2
x+L2

y+L2
z)

3
2

and the minimal and maximal curvatures follow from

κmax = H +
√

H2 −K

κmin = H −
√

H2 −K
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At umbilic points [10] , the two principal curvatures coincide and H2 = K.
These points are generically isolated points. Also both evolutes intersect at these
points. All other intersections of the two evolutes are due to different points of
the shape.

On the shape, ridges can be identified, defined as those points with locally
extremal curvature in one principal direction.

Since there are two distinct curvatures, we can assign to each point the points
S +N/κmin and S +N/κmax, where N is the unit normal vector. They define
two evolutes, representing the maximal and the minimal curvatures.

2 Ellipsoid

Since 3D Medial Axes are hard to compute and visualize, the forecast for these
tasks on the Symmetry Set is bad. In order to get at least the visualization as
clear as possible, we investigate a simple shape that allows an exact computation,
viz. an ellipsoid. Although it is still very artificial, it is the first shape (next
to the ”degenerated sphere) that gives a non-trivial Symmetry Set. In (x, y, z)
coordinates, define a generic ellipsoid by

L(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
= 1,

with a > b > c > 0. The ellipsoid had its endpoints at ±(a, 0, 0), ±(0, b, 0), and
±(0, 0, c). An example with (a, b, c) = (6, 3, 2) is given in Figure 1.

The ridges of the ellipsoid occur at x = 0, y = 0, and z = 0. In Figure 1 they
are visible as the curves. They intersect pair wise at the poles (bright blobs).
Note that the apparently triple intersection is due to projection.
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Fig. 1. An ellipsoid with ridges and special points (see text)
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Fig. 2. The evolutes for the ellipsoid. From left to right: depending on the maximal
curvature, the minimal curvature, and both (intersecting) evolutes.

The ellipsoid has four umbilic points [10] at (±a cosφ, 0, c sinφ) with φ the
solutions of a2 sin2 φ + c2 cos2 φ = b2. In Figure 1 they are visible as the dark
blobs.

Its Gaussian surface curvature K, Mean surface curvature H , and the mini-
mal and maximal curvatures follow directly from the previous section.

So to each point we can assign the points S + N/κmin and S + N/κmax,
defining two evolutes. They are shown in Figure 2. Note that they intersect, as
shown in the right plot. The umbilic points lie on the intersection curves.

2.1 Implicit Surface: (x, y, z) Data

In the remainder, let a = 6, b = 3, c = 2. Then N (x, y, z) = (x, 4y, 9z)(x2 +
16y2 + 81z2)−1/2 and locations of the SS are found at (x, y, z) − rN . Since the
shape is symmetric, the locations are at the x = 0, y = 0, and z = 0 ovoids.

Then for r the values rx=0 = (x2 + 16y2 + 81z2)1/2, ry=0 = 1
4 (x2 + 16y2 +

81z2)1/2, and rz=0 = 1
9 (x2 +16y2 +81z2)1/2 are found, with the SS ovoids px=0,

py=0, and pz=0.
The first ovoid, px=0 = (0,−3y,−8z), is given by (16y)2 + (9z)2 = (144)2,

with its extremal positions ±(0, 9, 0) and ±(0, 0, 16)
The second one, py=0 = (3x/4, 0,−5z/4), is given by (5x)2+(9z)2 = (45/2)2,

with its extremal positions ±(9
2 , 0, 0) and ±(0, 0, 5

2 )
The third one, pz=0 = (8x/9, 5y/9, 0), is given by (5x)2 + (16y)2 = (80/3)2,

with its extremal positions ±(16
3 , 0, 0) and ±(0, 5

3 , 0).
This is visualized in Figure 3. The left image shows the ovoids. The bright

point mark the positions of the pole-related points, while the dark points the
umbilic related point represent. The lines are due to the ridges forming the
boundaries of the ovoids - the A3 curves- and the intersections of ovoids - A2

1/A
2
1

lines. The origin is an A2
1/A

2
1/A

2
1 point, while the intersection with the A3 curves

result in A1A3 points. They are also shown in the middle image. The right image
shows a close-up, where it can be seen that the umbilic related points are indeed
on the curves. The umbilic points are found to be at φ = ± arccos(± 3

8

√
6), at

the points (± 9
4

√
6, 0,± 1

4

√
10).
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Fig. 3. Left: symmetry set ovoids with special points and curves. Middle: The special
curves and special points. Right: Close-up of the symmetry set ovoids with special
points and curves.

The evolutes intersect at the umbilic point. They also form the boundary of
the Symmetry Set ovoids in the cusp-curves (just as the 2D Symmetry Set is
bounded in the cusp-point of the evolute). At the umbilic point the two evolutes
interchange their task in bounding the Symmetry Set ovoid that intersects the
shape with its boundary. The other two ovoids have boundaries either completely
inside (in this case the Medial Axis ovoid), or completely outside the shape.

In this simple case the pre-symmetry set can be computed exactly, and
is given by the sets of points (x, y, z) combined with (−x, y, z),(x,−y, z), and
(x, y,−z).

2.2 Parameterisation - s, t Data

A parameterisation of L(x, y, t) is given by (6 sin s cos t, 3 cos s cos t, 2 sin t), with
s ∈ [−π, π[ and t ∈ [−π

2 ,
π
2 [. The extremal positions are obtained for (s, t) =

((s,−π
2 ), (s, π

2 ), (0, 0), (π, 0), (π
2 , 0)), (−π

2 , 0) which relate to (x, y, z) = ((0, 0,−2),
(0, 0, 2), (0, 3, 0), (0,−3, 0), (6, 0, 0), (−6, 0, 0)), respectively.

Note that for t = ±π
2 the two poles are obtained. There all s values coincide.

Ridge lines - A3 curves of the SS - are found on the boundary of each ellipse.
The symmetry set ovoids are given by

px=0 = (0,−3y,−8z), so (x, y, z) = (0,−9 coss cos t,−16 sin t),
py=0 = (3x/4, 0,−5z/4), so (x, y, z) = (9

2 sin s cos t, 0,− 5
2 sin t), and

pz=0 = (8x/9, 5y/9, 0), so (x, y, z) = (16
3 sin s cos t, 5

3 cos s cos t, 0).
The curvatures along the ridges are shown in Figure 4. The intersection

of the two curvatures in the middle graph is due to the umbilic points. The
curvatures coincide for (s, t) = (± 1

2π,± arccos(± 3
8

√
6). These D+

4 points are
on the boundary of py=0. They do not affect the ellipse, although the minimal
curvature (bounding the Symmetry Set) has a non-differential point there.
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Fig. 4. Curvatures along ridges. a) x = 0, b) y = 0, c) z = 0.

2.3 Pre-symmetry Set Surfaces

For the pre-Symmetry Set we find the sets
(s, t,−s, t) (for (x, y, z) = (−x, y, z)),
(s, t, ‖π − s‖π, t) (for (x, y, z) = (x,−y, z)), and
(s, t, s,−t) (for (x, y, z) = (x, y,−z)).

The axes of symmetry in the pre-symmetry set are, respectively,
s = 0, π i.e. (x, y, z) = (0,±3 cos t, 2 sin t), the ridge in the x = 0 ovoid,
s = ±π/2 i.e. (x, y, z) = (±6 cos t, 0, 2 sin t), the ridge in the y = 0 ovoid, and
t = 0 i.e. (x, y, z) = (6 sin s, 3 cos s, 0), the ridge in the z = 0 ovoid.
Therefore the ridge lines in the pre-Symmetry Set are formed by the curves

(0, t, 0, t), (π, t, π, t), (π/2, t, π/2, t), (−π/2, t,−π/2, t), and (s, 0, s, 0).
Intersections take place at (s, t,−s, t) = (s, t, s,−t), so s = 0, π and t = 0 due

to boundary conditions of s and t. Therefore intersections occur at (s, t) = (0, 0),
i.e. (x, y, t) = (0, 3, 0), and (s, t) = (π, 0), i.e. (x, y, t) = (0,−3, 0). This implies
that they occur at the extremal points on the y-axis. This intersection implies
(−x, y, z) = (x, y,−z), so (x, y, z) = (0, y, z] is expected, with y = ±3: the
intersection of the two ridges in the x = 0 and z = 0 ovoids.

(s, t, s,−t) = (s, t, ‖π − s‖π, t), so s = ±π/2 and t = 0. Then (s, t) =
(−π/2, 0), i.e. (x, y, t) = (−6, 0, 0), and (s, t) = (π/2, 0), i.e. (x, y, t) = (6, 0, 0).
This implies that they occur at the extremal points on the x-axis.

(s, t,−s, t) = (s, t, ‖π − s‖π, t), so t = ±π/2. Then (s, t) = (s,−π/2), i.e.
(x, y, t) = (0, 0,−2), and (s, t) = (s, π/2), i.e. (x, y, t) = (0, 0, 2). This implies
that they occur at the extremal points on the z-axis, the poles.

Therefore, intersections of the pre-symmetry set surfaces occur at the ex-
tremal values of the ellipsoid.

3 Computation

In the following sections we present three different ways to compute the 3D
symmetry set of the ellipsoid. The 3D symmetry set is defined similarly to the
2D case: the closure of centers of spheres tangent to the shape at at least two
points. The radius r and the center of the sphere are given by

pi − rNi = pj ± rNj (1)
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3.1 Exact Computation

For the exact computation, we take the parameterised ellipsoid and get a set of
data points by choosing s = π

20 + i π
10 , i = 0, 1, . . . , 19, and t = −π

2 + π
40 + j π

20 ,
j = 0, 1, . . . , 19. So there are 20 x 20 data points, see Figure 5a. Note that the
poles and ridges are not taken into the parameterisation.

Fig. 5. a) Selected points. b) Symmetry Set.

Next, the pre-SS is constructed by choosing the sets (s, t,−s, t), (s, t, ‖π −
s‖π, t), and (s, t, s,−t). The corresponding SS is derived from the 3D extension
of the 2D algorithm presented in [6]. It solves equation 1 exactly by construction
of the pre-SS.

The results are shown in Figure 5b. The separate ovoids are visualized in
Figure 6.

Fig. 6. 3 distinct ovoids of the Symmetry Set

As a check of the correctness of the solution, we verify that the minimum
absolute value of each triple (x, y, z) that is found as an SS point, is ”close
enough” to zero: note that the SS points form filled ellipses in the x = 0, y = 0,
or z = 0 ovoids. This graph is shown in Figure 7. It is within machine precision,
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Fig. 7. Minimum absolute value of each SS triple (x, y, z), ideally equal to zero

O(10−16). Note that 600 points (200 in each ovoid) are found. The algorithm
generates 3 x 20 x 20 = 1200 points, but half of them occur double due to
symmetry.

3.2 Extension of the 2D Zero-Crossings Algorithm

If the pre-SS needs to be computed from the data points and their normal
vectors, similar equations hold as in the 2D case for the zero-crossings algorithm
if the shape is (s, t)-parameterized and p1 is short notation for p(s1, t1):

(p1 − p2).(Ni ±Nj) = 0
(p1 − p2).(Ni ×Nj) = 0 (2)

The second constraint is new in 3D and rises from the fact that the line
(Ni × Nj) is the intersection of the two normal ovoids. This line is given by
(Ny1Nz2 −Ny2Nz1,−Nx1Nz2 + Nx2Nz1, Nx1Ny2 −Nx2Ny1).

As in the 2D case, the Anti Symmetry Set points should be removed from
this set. These points satisfy the fact that their tangent planes are parallel.
Equivalently, the normal vectors are aligned. Consequently, the normal at the
first point is perpendicular to the tangent plane at the second plane. This plane
is computed as follows. Let v1 = N1 = (a, b, c). Then two vectors are sought that
satisfy v1.v2 = 0, v1.v3 = 0, and v2.v3 = 0. One combination satisfying these
constraints is the set v2 = (−2bc, ac, ab) and v3 = (ab2 − ac2,−a2b− 2bc2, a2c +
2b2c).

So the ASS is found as the intersection of the solutions of

(Nx1, Ny1, Nz1).(2Ny2Nz2, Nx2Nz2, Nx2Ny2) = 0
(Nx1, Ny1, Nz1).(Nx2N

2
y2 − Nx2N

2
z2,−N2

x2Ny2 − 2Ny2N
2
z2, N

2
x2Nz2 + 2N2

y2Nz2) = 0
(3)

Note that the pre-SS space is a 4D space. The zero-crossings are obtained by
taking changes in the signs of the equations above in all four directions.

Calculation of the pre-SS and SS. To compute the pre-SS, one should be
careful. If the data is constructed as in the previous section, one enters exact
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Fig. 8. a) Selected points. b) Symmetry Set.

solutions of the positions of zero-crossings. This is non-generic in general, and
the algorithm, detecting only full sign-changes, will fail to find these points. So
additional infinitesimal noise should be added to generate a generic parameter-
ized point cloud. Noise is taken in the order of O(10−5) and affects both the
positions - so points may be slightly off-ellipse, and normal vectorss - so they
are not calculated at the right position and do not have exactly unit length. The
point cloud, Figure 8a, looks similar to the unperturbed cloud.

In this case with 400 data points computational time is reaching the limits
of being acceptable. It takes the algorithm 8.4 seconds to find 24216 points for
the first zero-crossing, and 11.4 seconds to find 55556 points for the second zero-
crossing, yielding 8210 points on the intersection. Next, it takes 7.4 seconds to
find 73359 points for the first ASS zero-crossing, and 11.2 seconds to find 63226
points for the second ASS zero-crossing, yielding 30104 ASS points as intersec-
tion. The complement of both intersection results gives 5438 SS-solutions, but
since the pre-SS is symmetric, in total 2719 SS-points are found. The resulting
symmetry set is shown in Figure 8b.

Next, the points in the three ovoids are shown in Figure 9. This is a view of
the SS along each of the three axes, while the plot area is restricted to (−.1, .1).

Fig. 9. 3 distinct ovoids of the Symmetry Set
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Fig. 10. Minimum absolute value (unsorted and sorted) of each SS triple (x, y, z),
ideally equal to zero

As one can see there are some outliers. This is verified by the minimum
absolute value of each triple (x, y, z) that is found as an SS point. These minimal
values-graph is shown in Figure 10. The left image indicates some symmetry that
is indeed present due to the algorithm

The largest value is caused by the point (−2.16,−1.62,−2.74). It resembles
to points at p1 = (−4.94, 1.26, .7653) and p2 = (−3.92, 1.96, 7654). Apparently,
their z values are close. We have ‖p1 − p2‖ = 1.24, ‖N1 − N2‖ = 0.257, ‖N1 +
N2‖ = 1.98, ‖N1 ×N2‖ = .255. For the two zero-crossing values we find values
(p1 − p2).(N1 + N2) = .02 and (p1 − p2).(N1 ×N2) = .13, normalized they are
.007 and .43, respectively. Apparently they are found of zero crossings, but due
to the relatively flatness of the shape their positions cause a large error in the
position.

Outliers. Lets look into ASS points more detailed. Consider the tangent circle
for a point p1 = (x, y, z) with corresponding normal N1 = (Nx, Ny, Nz). We have
as SS point, say, p2 = (−x, y, z) with corresponding normal N2 = (−Nx, Ny, Nz),
and as an ASS point, say, p3 = (−x,−y, z) with corresponding normal N3 =
(−Nx,−Ny, Nz).

Now p1 − p2 = (2x, 0, 0), N1 − N2 = (2Nx, 0, 0), N1 + N2 = (0, 2Ny, 2Nz),
N1×N2 = (0,−2NxNy, 2NyNx). So (p1−p2).(N1 +N2) = 0 and (p1−p2).(N1×
N2) = 0.

Also p1 − p3 = (2x, 2y, 0), N1 − N3 = (2Nx, 2Ny, 0), N1 + N3 = (0, 0, 2Nz),
N1×N3 = (2NyNz,−2NxNz, 0). So (p1−p3).(N1 +N3) = 0 and (p1−p3).(N1×
N3) = 4Nz(xNy − yNx) which may become (close to) zero for certain combi-
nations of points, especially when two points are nearby. If this is the case, the
two normal vectors are almost pointing into the same direction and the norm of
their sum is close to 2, and subtracting yields almost 0. So as an extra check one
can remove these point combinations.

So, experiment 1: require that ‖N1 − N2‖ > ε ≥ 0. For ε = .25, 1926 SS
points are left. However, the point mentioned above is still part of the SS. For
ε = .5, 2912 SS points are left. The maximal minimum values are significantly
lower. See Figure 11a,b.
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Fig. 11. a) min norm constraint. b) Idem, sorted. c) max norm constraint. d) Idem,
sorted.

Experiment 2: require that ‖N1 + N2‖ < ε ≤ 2. For ε = 1.98 1906 SS points
are left. Also in this case, the point mentioned above is still part of the SS.
For ε = 1.95 3066 SS points are left. The maximal minimum values are again
significantly lower. See Figure 11c,d.

Apparently subtracting is less sensitive. Furthermore, setting this norm seems
to affect the large SS-ellipse. This makes sense, since it depends on the parts of
the shape that are most flat, requires longest radii and have (thus) normal vectors
that are close to each other.

Another constraint may be requiring that the normalised inner product val-
ues of the vectors found as zero-crossings, is small. Set it to .2 for both, in
combination with ‖N1 − N2‖ > .5, gives 994 points with maximum minimal
error value .55. This opens possibilities to the next approach.

3.3 Symmetry Sets from Point Clouds

Apparently, the parameterisation causes problems, especially at the north and
south poles, but also at points in flat regions. To overcome these problems, extra
constraints can be added. What one does in that case, is not looking for zero-
crossings explicitly, but pairs of points that are close enough to be considered as
zero crossings. As zero-crossings require a parameterization, the ”close enough
approach can be considered as parameterless.

It is therefore worth the effort to investigate what these constraints would do
on a random point set. That is, given an arbitrary set of points pi on the ellipse
with unit normal vectors Ni, select each combination satisfying

(p1 − p2).(N1 + N2) < δ1

(p1 − p2).(N1 ×N2) < δ2

‖N1 −N2‖ > ε
(4)

and define this set as the Symmetry Set.
This approach has been taken in the following. A random point set on the

ellipsoid is taken in the (x, y, z) space, see Figure 12. A selection in the (s, t)
space yields a similar cloud, although more points are close to the north and
south poles. One can see that the large ovoid is least detailed, as expected. Since
the normal vectors are known by definition, regularization is not needed and the
Symmetry Set can be computed directly. With 1000 points, 10191 Symmetry Set
points are found in 150 seconds. Limiting to 500 points, 2573 points are found
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Fig. 12. a) Randomly selected points. b) Symmetry Set.

in 37 seconds. For the latter we set δ1 = .1, δ2 = .75, and ε = 1.95, yielding 1599
points.

The deviation from the ovoids is in the order of the previous calculations, see
Figure 13. Of course, more tuning of the parameters δ1, δ2, and ε may improve
the performance.
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Fig. 13. Minimum absolute value of each SS triple - random point cloud

4 Conclusions and Perspectives

For shapes in 3D, the Symmetry Set can be computed using a simple extension of
the approach taken in the 2D case. Although this is an almost trivial extension,
numerical problems arise earlier than in the 2D case. Since the algorithms imply
computation of the pre-Symmetry Set, the complexity of the algorithm prohibits
large data sets. A refinement of the shape in adding more data points is therefore
not possible.

The zero crossings method used requires a parameterisation. Since additional
parameters / thresholds are needed to avoid numerical instabilities, the param-
eterization may as well be ignored and the method works on unordered point
clouds. In the example given the normal vectors were known a priori, but if they
need to be estimated by means of some kind of regularisation, (large) errors may
be introduced. This needs more experiments.
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Next, the visualization of the Symmetry Set in 3D is hard. It cannot be
avoided by using the pre-Symmetry Set, since this set lives in a 4D space, albeit
that the set itself contains only 2D manifolds. The use of this set and some of
the mathematical properties may reveal interesting and useful starting points.
For instance, in 2D curves in the pre-SS do not intersect, while in 3D they do.
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Irradiation Orientation from Obliquely Viewed
Texture

Sylvia C. Pont and Jan J. Koenderink
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Abstract. We studied image texture due to the shading of corrugated
(3D textured) surfaces, which are Lambertian on the micro scale. Our
theory applies to physically canonical cases of isotropic Gaussian random
surfaces, under collimated illumination. In this investigation we analyze
effects of oblique viewing, extending our theory which applied to normal
viewing conditions only [5]. The theory for normal views predicts the
structure tensors from either the gradient or the Hessian of the image
intensity and allows for inferences of the orientation of irradiation of the
surface. Even for surfaces that are not at all Gaussian, the BRDF [10] far
from Lambertian, with vignetting and multiple scattering present, such
inferences of the orientation of irradiation were accurate up to a few de-
grees. In this paper we derive predictions for oblique viewing conditions,
for which the inferences of the irradiation orientation will deviate from
the veridical value in a systematic manner, depending on the viewing
and illumination directions. Theoretical predictions are compared with
empirical data, for rendered and for real rough surfaces, and found to be
in good agreement. We discuss issues of scale selection and robustness.

1 Introduction

In this paper, we present a practical result of application of first/second order
scale space theory. In images of natural scenes, image texture due to the illu-
mination of rough (three-dimensionally corrugated) surfaces provides us with
cues about the illumination [2,4,8]. We showed that for frontally viewed rough
surfaces, the second order image intensity structure of the texture (a statistical
description) depends directly on the tangential component of the light vector
[5]. We were able to infer the orientation of the irradiation of the surface on the
basis of the structure tensors from either the gradient or the Hessian of the image
intensity. Interestingly, human observer performance was similar to the results
of our computer vision algorithm [6]. This theory was based on rather restrictive
assumptions (locally Lambertian [7] isotropic random Gaussian surfaces under
collimated illumination in normal view) and effects of shadowing, occlusions, and
multiple scattering were neglected. Still, for textures from the Curet database
[3], irradiation orientations were recovered empirically with an accuracy of a few
degrees. In this paper, we extend our theory with oblique viewing conditions,
and we test our theory for Gaussian surfaces.

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 205–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Theory

For an in-depth treatment of the statistics of the illuminance distribution for
stationary, isotropic, random Gaussian surfaces with shallow relief, Lambertian
reflectance [7] and constant albedo, illuminated obliquely with a collimated beam
of radiation, and viewed frontally, see [5]. Consider a collimated beam from
the direction j = cosϑ(cosϕex + sinϕey) + sinϑez, where ez = n the local
surface normal whereas ex,y span the tangent plane. Because we assume isotropic
corrugations the direction of ex has to be assigned arbitrarily. Derivation of the
squared gradient and Hessian, applying the theories of Longuet-Higgins [9] and
of Berry and Hannay [1], leads to the fact that both the squared gradient G2

and the Hessian H2 are equal to the symmetric matrix

S =
M2n

8
cot2 ϑ

(
2 + cos 2ϕ sin 2ϕ
sin 2ϕ 2− cos 2ϕ

)
,

with n = 2 for G2 and n = 3 for H2. The factor of proportionality depends upon
the particular circular moments M2n that characterize the surface texture, i.e.,
on the particular autocorrelation function of the heights. The angular depen-
dence itself is quite independent of the circular moments. The eigenvectors of S
are {cosϕ, sinϕ} (it points in (or away from) the direction of illumination) with
eigenvalue 3 and {cos(ϕ+π/2), sin(ϕ+ π/2)} with eigenvalue 1. The confidence
is c = (λ2

1 − λ2
2)/(λ

2
1 + λ2

2) = 0.8, indicating a rather strong orientational bias.
If the surfaces are viewed from an oblique angle instead of frontally, the 3D

texture will be affected by foreshortening and local occlusions. We study the
effect of foreshortening theoretically; effects of local occlusions will be studied
empirically in future research, but will be neglected in our theoretical shallow
relief approach. Let ϕ denote the azimuth of the direction of illumination in
the unforeshortened view. Assume that the X-direction suffers a perspective
foreshortening by a factor cosµ (viewing angle µ). Then each differentiation by
x scales the matrix element by cosµ. Thus the average Hessian becomes:

M =
M2n

8
cot2 ϑ

(
(2 + cos 2ϕ)/ cos2 µ sin 2ϕ/ cosµ
sin 2ϕ/ cosµ 2− cos 2ϕ

)
,

If we apply our algorithm straightforward and estimate the irradiance orien-
tation on the basis of the structure tensors from either the gradient or the Hessian
of the image intensity we will find an ”estimated orientation of incidence”:

ψ = 1/ arctan(
cosµ

2
1

sin 2ϕ
(−2 + cos 2ϕ +

2 + cos 2ϕ
cos2 µ

+√
−12

cos2 µ
+ (2 +

2
cos2 µ

+ cos 2ϕ tan2 µ)2)),

from the eigenvectors of M (ψ reduces to ϕ for µ = 0). The confidence can
be estimated from the eigenvalues of M, following the definition of c as shown
above. The resulting formula is rather unwieldy and therefore not shown.
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3 Predictions and Test

Figure 1 shows graphs of predictions of uncorrected estimates of the irradiance
orientation (left) and the corresponding confidence levels (right), as a function of
the viewing angle µ, for actual irradiance orientations ϕ = −90◦,−85◦, ..., 90◦.
It is clear that if our original algorithm would be applied without accounting
for oblique viewing angles, the results will generally deviate from the veridical
irradiation orientation and from the confidence level 0.8. The orientation devi-
ations are larger for more oblique viewing directions and for larger differences
between the foreshortening direction and the actual irradiance orientation. The
confidence shows “false” high levels which can be as large as 1. The solution
behaves critically around 55◦. For angles smaller than 55◦ we expect that the
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Fig. 1. Top: Graphs of the uncorrected predictions of irradiance orientation estimates
(left) and the corresponding confidence levels (right), as a function of the viewing an-
gle µ, for actual irradiance orientations ϕ = −90◦,−85◦, ..., 90◦. Bottom: Photographs
of Gaussian surfaces which were illuminated from angles of 0◦, 30◦, 60◦, 90◦ (top to
bottom) and foreshortened for angles of µ = 0◦, 15◦, ..., 75◦ (left to right). The orien-
tations of the bars represent predictions ψ (in black) and calculations on the basis of
the Hessian (in grey). The bar lengths were scaled according to the confidence level.
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Fig. 2. An illustration of the issue of scale selection with regard to 3D resolution or
shape. The photograph shows textures at two different scales: the macro scale of the
balls and the meso scale of the rough finish of the balls. The illumination came from
the left. If we choose a scale for the differential operator which is just smaller than
the dimensions of the balls and which is much larger than the dimensions of the rough
finish of the balls, we find irradiance orientation estimates in accordance with the global
irradiance orientation (above right). If we choose the width of the differential operator
to be smaller than the dimensions of the roughness on the balls, we find that the
irradiance orientation estimates represent the illuminance flow over the balls. Those
flow patterns radiate out from the point at which the illumination hits the surface
head-on.
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orientation estimates can be corrected, using estimates of µ. For viewing an-
gles larger than 55◦ there are no unique solutions on the basis of orientation
only.

Figure 1 shows Gaussian textures, illuminated from angles of 0◦, 30◦, 60◦, 90◦

(top to bottom) and foreshortened for angles of µ = 0◦, 15◦, ..., 75◦ (left to right).
The orientations of the black and grey bars show predictions ψ and calculations
on the basis of the Hessian. The bar lengths were scaled according to the confi-
dence level. It is clear that the predictions and the data are in good agreement.
The scales of the Gaussian derivatives and of the area over which the averaging
was done were selected according to the following procedure. The scale of the
Gaussian derivative was selected to be similar to or smaller than the width of
the smallest dipole structures in the textures. This resulted in a small range of
numbers for the first scale. Next, we ran our algorithm for several values of the
averaging/blurring kernel, resulting in several sets of estimates for the orienta-
tions and confidence levels. The data for the globally flat surfaces in Figure 1,
were selected from those sets on the basis of maximalization of the median con-
fidence level. Typically the choice of the width of the averaging/blurring kernel
for the local estimates would depend on the “shape” or, in other words, 3D
resolution; for an illustration see Figure 2. For the Gaussian textures in Fig-
ure 1 the complete data set showed that results were robust if the scale of the
Gaussian derivative was smaller than the smallest dipole structures. However,
if the derivative scale was just slightly larger, the images in the second last
column and last rows the estimates depended very much on scale choice. In
other words, estimates showed critical behavior around the singular point at
µ = 55◦.

4 Discussion

The issue of scale selection needs further investigation, with special attention to
the presence of multiple scales in foreshortened 3D textures. Currently we are
testing our theory for real textures and we are investigating to what extent the
effects of oblique viewing can be corrected for, using estimates of local surface
orientation from texture. Finally, these studies will provide insight into the 3D
texture gradients over 3D objects (illuminance flow [11] over solid, rough ob-
jects). These 3D texture gradients provide cues, which are complementary to
shading cues, for shape and light field estimates.
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Using Top-Points as Interest Points for Image Matching
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Abstract. We consider the use of so-called top-points for object retrieval. These
points are based on scale-space and catastrophe theory, and are invariant under
gray value scaling and offset as well as scale-Euclidean transformations. The dif-
ferential properties and noise characteristics of these points are mathematically
well understood. It is possible to retrieve the exact location of a top-point from
any coarse estimation through a closed-form vector equation which only depends
on local derivatives in the estimated point. All these properties make top-points
highly suitable as anchor points for invariant matching schemes. In a set of ex-
amples we show the excellent performance of top-points in an object retrieval
task.

1 Introduction

Local invariant features are useful for finding corresponding points between images
when they are calculated at invariant interest points. The most popular interest points
are Harris points [7], extrema in the normalized scale-space of the Laplacian of the
image [10,11] or a combination of both [13]. For an overview of different interest points
the reader is referred to [15].

We propose a novel, highly invariant type of interest point, based on scale-space and
catastrophe theory. The mathematical properties and behavior of these so-called top-
points are well understood. These interest points are invariant under gray value scaling
and offset as well as arbitrary scale-Euclidean transformations. The noise behavior of
top-points can be described in closed-form, which enables us to accurately predict the
stability of the points. For tasks like matching or retrieval it is of decisive importance to
take into account the (in)stability of the descriptive data.

For matching it is important that a set of distinctive local invariant features is avail-
able in the interest points. An overview of invariant features is given in [12]. The choice
of invariant features taken in the top-points is free. Because of their simple and mathe-
matically nice nature we have chosen to use a complete set of differential invariants up
to third order [5,6] as invariant features. A similarity measure between these invariant
feature vectors based on the noise behavior of the differential invariants is proposed.

A small set of examples will demonstrate the potential of our interest points.
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cial support.
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2 Interest Points

We present an algorithm for finding interest points in Gaussian scale-space. As input we
may use the original image, but we may also choose to use its Laplacian, or any other
linear differential entity. The input for our algorithm will be referred to as f(x, y).

2.1 Scale Space Approach

To find interest points that are invariant to zooming we have to observe the input func-
tion at all possible scales. Particularly suitable for calculating the scale space represen-
tation of the image (or any other linear differential entity of the image) is the Gaussian
kernel [9]

φσ(x, y) =
1

2πσ2
e−

1
2 (x2+y2)/σ2

. (1)

The input function can now be calculated at any scale by convolution with the Gaussian

u(x, y, σ) = (φσ ∗ f) (x, y). (2)

Derivatives of the input function can be calculated at any scale by

Du(x, y, σ) = (Dφσ ∗ f) (x, y), (3)

where D is any linear derivative operator with constant coefficients.

2.2 Catastrophe Theory

Critical points are points at any fixed scale at which the gradient vanishes. Catastrophe
theory studies how such points change as certain control parameters change, in our case
scale.

In the case of a generic 2D input function the catastrophes occurring in Gaussian
scale space are creations and annihilations of critical points with opposite Hessian sig-
nature [2,4], i.e. extrema and saddles. The movement of critical points through scale
induces critical paths. Each path consists of one (or multiple) saddle branch(es) and
extremum branch(es). The point at which a creation or annihilation occurs is often re-
ferred to as a top-point1. A typical set of critical paths and top-points of an image is
shown in Fig. 1. In a top-point the determinant of the Hessian of the input function
becomes zero. If u denotes the image, a top-point is thus defined as a point for which

ux = 0 ,
uy = 0 ,
uxxuyy − u2

xy = 0 .
(4)

The extrema of the normalized Laplacean scale space as introduced by Lindeberg
[10], and used by Lowe [11] in his matching scheme, lie on the critical paths of the
Laplacean image. Multiple of such extrema may exist on the extremum branch of a
critical path, whereas there is only one top-point per annihilating extremum/saddle pair,
Fig. 2a.

1 This misnomer is reminiscent of the 1D case [8], in which only annihilations occur generically,
so that a top-point is only found at the top of a critical path.
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Fig. 1. Selection of critical paths and top-points of a magazine cover image

2.3 Invariance

Interest points are called invariant to transformation if they are preserved by the trans-
formation. From their definition (4), it is apparent that top-points are invariant under
gray value scaling and offset.

Suppose G is some group of affine spatial transformations, which acts on the func-
tion u as follows:

ũ(x̃, ỹ, σ̃) = au(x, y, σ) + b, (5)

where [
x̃
ỹ

]
=
[
a11 a12

a21 a22

] [
x
y

]
+
[
b1
b2

]
,

and in which a and b depend on the parameters aij , bi. A top-point of u is invariant
under G, since, in corresponding points,

ũx̃ = a11ux + a12uy,
ũỹ = a21ux + a22uy,
ũx̃x̃ũỹỹ − ũ2

x̃ỹ = a2(a11a22 − a2
12)2(uxxuyy − u2

xy),
(6)

recall (4). This shows that top-points and critical paths are invariant under rigid trans-
formations and zooming (i.e. the scale-Euclidean group).

2.4 Detection Versus Localization

Critical paths are detected by following critical points through scale. Top-points are
found as local maxima or minima in scale on the critical paths.

The detection of top-points does not have to be exact, since, given an adequate initial
guess, it is possible to refine their position such that (4) holds to any desired precision
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by a perturbative technique proposed by Florack and Kuijper [4]. This allows one to use
a less accurate but fast detection algorithm.

2.5 Stability

The stability of a top-point can be expressed in terms of the variances of spatial and
scale displacements induced by additive noise. Since top-points are generic entities in
scale space, they cannot vanish or appear when the image is only slightly perturbed.
We assume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of a top-point can be investigated by means of a perturbative approach.
Given this assumption it can be shown that the displacement depends on derivatives
up to fourth order evaluated at the top-point, and on the noise variance. For detailed
formulas (and experimental verifications) the reader is referred to [1].

The advantage of this approach is that variances of scale space displacements can be
predicted theoretically and in analytically closed-form on the basis of the local differ-
ential structure at a given top-point, cf. Fig. 2b for an illustration. The ability to predict
the motion of top-points under noise is valuable when matching noisy data (e.g. one
may want to disregard highly unstable top-points altogether).

(a) (b)

Fig. 2. a. A set of critical paths with corresponding top-points (topmost bullets), and extrema of
the normalized Laplacian (remaining bullets). b. The ellipses capture the variances of the scale
space displacement of each top-point under additive noise of known variance.

2.6 Repeatability

Schmid et al. [15] introduced the so-called repeatability criterion to evaluate the stability
and accuracy of interest points and interest point detectors. The repeatability score for
a given pair of images is computed as the ratio between the number of point-to-point
correspondences and the minimum number of interest points detected in the images.

The perturbative technique proposed by Florack and Kuijper [4] mentioned in
Sec. 2.4 is used to find a vector in each top-point of the unperturbed image, that points
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to the location of a top-point in the perturbed image. If this vector moves the top-point
less than a distance of ε pixels we mark the point as a repeatable point (typically we set
ε ≈ 2 pixels).

Experiments show the repeatability of top-points under image rotation (Fig. 3a) and
additive Gaussian noise (Fig. 3b). Image rotation causes some top-points to be lost
or created due to the resampling of the image. In the Gaussian noise experiment we
demonstrate that by using the stability variances described in Sec. 2.5 the repeatability
of the top-points can be increased. The top-points are ordered on their stability vari-
ances. From this list 100%, 66% and 50% of the most stable top-points are selected
for the repeatability experiment respectively. From Fig. 3b it is apparent that discarding
instable points increases the repeatability significantly. The high repeatability rate of
the top-points enables us to match images under any angle of rotation and under high
levels of noise.

20 40 60 80 100 120 140
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80
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90

95

100
repeatability %
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1px

(a)
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noise %
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60

80

100

repeatability %

50%
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100%

(b)

Fig. 3. a. The repeatability of top-points under image rotation, for distances ε=1, 2 and 3 pixels
respectively. b. The repeatability of top-points under additive Gaussian noise, for 100%, 66% and
50% of the most stable top-points respectively (ε = 2 pixels).

3 Matching Using Top-Points

For matching it is important that a set of distinctive local invariant features is available
in the interest points. It is possible to use any set of invariant features in the top-points.
Mikolajcyck and Schmid [12] give an overview of a number of such local descriptors.

3.1 Local Invariant Features

For our experiments we have used a complete set of differential invariants up to third
order. The complete sets proposed by Florack et al. [6] are invariant to rigid transfor-
mations. By suitable scaling and normalization we obtain invariance to spatial zooming
and intensity scaling as well, but the resulting system has the property that most low
order invariants vanish identically at the top-points of the original (zeroth order) image,
and thus do not qualify as distinctive features. Thus when considering top-points of the
original image other distinctive features will have to be used. In [14] the embedding of
a graph connecting top-points is used as a descriptor. This proved to be a suitable way
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of describing the global relationship between top-points of the original image. In this
paper we use the image Laplacian as input function for our top-point detector. For this
case the non-trivial, scaled and normalized differential invariants up to third order are
collected into the column vector given by(7), in which summation convention applies:

σ
√

uiui/u
σuii/

√
ujuj

σ2uijuij/ukuk

σuiuijuj/(ukuk)3/2

σ2uijkuiujuk/(ulul)2

σ2εijujkluiukul/(umum)2

 . (7)

Here εij is the completely antisymmetric epsilon tensor, normalized such that ε12 =
1. Note that the derivatives are extracted from the original, zeroth order image, but
evaluated at the location of the top-points of the image Laplacian. This is, in particular,
why the gradient magnitude in the denominator poses no difficulties, as it is generically
nonzero at a top-point.

The resulting scheme (interest point plus differential feature vector) guarantees
manifest invariance under the scale-Euclidean spatial transformation group, and under
linear grey value rescalings.

4 Similarity Measure in the Feature Space

To investigate the stability of the feature vectors we use the same approach as described
in Sec. 2.5 for the stability of top-points. This results in the covariance matrix Σ of
which the elements depend on derivatives in the interest point up to third order. The
uncertainty of the feature vector x0 can be modeled as a normal distribution with density
function (8) (where n = 6).

ρ(x;x0) =
1√

detΣx0(2π)n/2
exp[−1

2
(x− x0)TΣ−1

x0
(x− x0)] (8)

We define our measure of similarity d between interest points x0 and x1 as 1−the
probability for point x0 to be inside the iso-probability contour of the density function
going through x1. This is schematically demonstrated in Fig. 4a.

d(x0,x1) = 1−
∫

Ω

ρ(y;x0)dy =
Γ (R2/2, n

2 )
Γ (n

2 )
(9)

The radius of the iso-probability contour and the region inside the contour are given by
R2 = (x1−x0)T Σ−1

x0
(x1−x0) and Ω = {y | (y−x0)T Σ−1

x0
(y−x0) ≤ R2} respec-

tively. Γ (x, n) is the incomplete gamma function given by Γ (x, n) =
∫ x

0
e−yyn−1dy

and the Euler gamma function Γ (n) = Γ (∞, n).
Similarity measure d always yields a number between 0 and 1, where 0 is not similar

and 1 is very similar. This allows us to use a well defined threshold on the similarity
of interest points, in order to decrease complexity of the matching algorithm without
losing valuable data, as will be demonstrated in Sec. 5.
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(a)

Fig. 4. a. Schematic 2D representation of the probability density function around interest point
x0 and the iso-probability contour going through x1. b. Similarities d for corresponding inter-
est points. Two clusters with the same angles ∆σ can be identified. Mismatched points have a
similarity measure close to 0.

5 Matching

In our examples we consider an object-scene retrieval problem in which the scene may
contain rotated, scaled, and occluded versions of a query object. This implies that we
have a set of interest points and features belonging to the query object and a set belong-
ing to the scene from which we try to retrieve the object.

Apart from the invariant feature vector we store the location (x, y, σ) and the gra-
dient angle θ of each interest point. For each interest point of the object we find a
corresponding interest point in the scene. Correspondence is obtained by finding the in-
terest point with maximal similarity d (9), between their feature vectors. For each pair
of corresponding object and scene interest points we calculate the difference in gradient
angle (∆θ = θscene−θobject) and logarithmic scale (∆τ = τscene−τobject, with τ ∝ lnσ).
Thus every pair of corresponding interest points yields a coordinate pair (∆θ,∆τ).

A scatter plot of all these pairs reveals clusters, as shown in Fig. 5a for an object-
scene matching experiment where the scene contains two instances of the object with
different rotation angles and zooming factors. Figure 4b shows the similarity measures
for corresponding interest points. Two clusters of points with the same difference in
angles ∆θ can be identified. Corresponding points that do not have the correct angles
(mismatched points) have a similarity measure close to 0. By applying a threshold on
the similarity of d > 0.1 (the threshold value is not very critical) the clusters are cleaned
up significantly (Fig. 5b), facilitating the clustering step of the algorithm.

The mean of each cluster yields a particular rotation and zooming needed to map
the query object to a corresponding object in the scene.

We have used a shared-nearest-neighbor (SNN) approach to solve the clustering
problem [3], but the bin-based approach as suggested by Lowe [11] can also be used
for this task. By using the SNN approach the clusters with the highest densities are
identified.
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Fig. 5. a. Cluster of the differences in angles and scales (∆θ, ∆τ ) of corresponding interest
points. b. Same as in a. but now corresponding points with similarity measure d < 0.1 are
discarded.

After clustering, the coordinate triple (x, y, σ) of each scene interest point belonging
to a cluster is rotated and scaled according to the cluster’s mean (∆θ,∆τ ), so that the
transformed triple (xt, yt, σt) matches the corresponding interest point in the query
object: xt

yt

σt

 = e∆τ

 cos∆θ − sin∆θ 0
sin∆θ cos∆θ 0

0 0 1

x
y
σ

 . (10)

Note that this step is independent of where the object is in the scene. After this
step the difference in spatial positions of the query object’s interest points and those
in the clustered scene are calculated. One obtains a coordinate pair (∆x,∆y) for each
object/scene pair in the cluster. These coordinate pairs can be clustered in the same way
as before, giving us the translation(s) of the object(s) in the scene. With this final step we
have identified the location of the object in the scene. In particular we can now transform
the outline of the query object according to the mean parameters (∆θ,∆τ,∆x,∆y),
and project it onto the scene image.

The complete matching algorithm is summarized in algorithm 1.

Algorithm 1 Object retrieval algorithm
1: Detect the critical paths.
2: Extract the approximate locations of the top-points from the critical paths.
3: Refine the location of the top-points.
4: Calculate the feature vectors for the top-points.
5: Form pairs of corresponding object and scene top-points.
6: Cluster (∆θ, ∆τ ) to solve for rotation and scaling.
7: Rotate and scale the scene top-points to match the object points.
8: Cluster (∆x, ∆y) to solve for translation.
9: Transform the outline of the query object by (∆θ, ∆τ, ∆x, ∆y) and project it onto the scene.
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6 Retrieval Examples

We have included some examples of an object retrieval task. We have a set of magazine
covers (of size 200 × 140 pixels) and a scene (of size 400 × 350 pixels) containing a
number of the magazines, distributed, rotated, scaled, and occluded.

The task is to retrieve a magazine from the scene image. For the query images we
find approximately 500 top-points per query image (which may be pre-computed off-
line). For the scene image we find approximately 3000 top-points.

Fig. 6. Matching interest points (white) of a query object and a scene containing two rotated,
scaled and occluded versions of the object. Interest points that do not match are shown in grey.

Table 1. Transformation error. a, b and c represent the magazine covers in the left column of Fig.
7 respectively. The second column shows the number of matched interest points for each object
in the scene. The third column shows the error made in rotation (degrees), zooming (factor) and
translation (pixels).

Size Error in (∆θ, e∆τ , ∆x, ∆y)
a. 218, 58 {0.1, 0.005, 0.1, 0.2}, {0.5,0.001, 0.4, 0.5}
b. 21 {0.06, 0.002,0.01, 0.8}
c. 175, 15 {0.005, 0.005,0.05, 0.5}, {0.006, 0.006, 0.2, 0.4}
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We follow algorithm 1 and match the top-points of query magazine covers to the
top-points in the scene. Such a match is demonstrated in Fig. 6.

Correct matches are found for all the magazine covers in the scene, even for the
highly occluded ones. In Fig. 7 three retrieval tasks are demonstrated. The amount of
correctly matched points and the errors made in the retrieved transformations compared
to the ground truth are shown in Table 1.

Fig. 7. Combined results of matches to the query objects in the left column. Note that even the
highly occluded magazine at the bottom is retrieved correctly.

The examples show that the interest points and features are indeed invariant under
rotation and scaling, and that the algorithm is able to handle severe occlusions (in the
example relative occlusions up to approximately 85% pose no difficulties).

Since our interest points are found in scale-space, the algorithm can also handle
different kinds of grey-tone renderings of the image. We demonstrate this by using
a coarse-grained dithering on the scene image. Even under these circumstances the
algorithm was able to correctly retrieve the magazine covers by matching coarse scale
interest points. An example of this is shown in Fig. 8.
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Fig. 8. Successful retrieval of an object in a coarsely dithered scene image

7 Summary and Conclusions

We have introduced top-points as highly invariant interest points that are suitable for
image matching. Top-points are versatile as they can be calculated for every generic
function of the image.

We have pointed out that top-points are invariant under scale-Euclidean transfor-
mations as well as under gray value scaling and offset. The sensitivity of top-points
to additive noise can be predicted analytically, which is useful when matching noisy
images. Top-point localization does not have to be very accurate, since it is possible to
refine its position using local differential image structure. This enables fast detection,
without losing the exact location of the top-point.

As features for our interest points we use a feature vector consisting of only six nor-
malized and scaled differential invariants. We have also introduced a similarity mea-
sure based on the noise behavior of our feature vectors. Thresholding on this simi-
larity measure facilitates the clustering significantly. The conducted experiments show
excellent performance with very little error in the localization of the objects in the
scene.
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Abstract. Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale
image descriptors aimed at representing the deep structures of images.
Changes in images are directly translated to changes in the deep struc-
tures; therefore transitions in MSSTs. Because MSSTs can be used to
represent the deep structure of images efficiently, it is important to
investigate and understand their transitions and impacts. We present
four kinds of MSST transitions and discuss the potential advantages of
Saddle-Based MSSTs over Extrema-Based MSSTs. The study of MSST
transitions presented in this paper is an important step towards the
development of the image matching and indexing algorithms based on
MSSTs.

1 Introduction

In scale-space theory [3,13,4], the relations between image structures at differ-
ent scales is referred to as the deep structure [4,6]. Based on the scale-space
theory and the singularity theory [12,2], the Extrema-Based and Saddle-Based
Multi-Scale Singularity Trees(MSSTs) [10] representing the deep structure of
images are constructed. Since MSSTs can be used to efficiently represent the
deep structures of images, the investigation of their transitions as the images are
smoothly changed is both theoretically interesting and crucially important for
the development of algorithms based on MSSTs. In that way, different images
can be related to each other through a series of transitions.

In this paper, we investigate the transitions of MSSTs by observing the
changes of critical paths in scale-space images as the images are smoothly
changed. Transitions of MSST are then derived and presented together with
illustrative examples. Four kinds of transitions are presented, i.e. change of
catastrophe-extremum/saddle position, change of catastrophe-catastrophe re-
lation, change of catastrophe ordering, and change of extremum-catastrophe
connection. We present each transition and discuss its impacts using a sim-
ple example. The potential advantages of the Saddle-Based MSSTs over the
Extrema-Based MSSTs are also discussed and illustratively presented. Similar

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 223–233, 2005.
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study of the transitions of the Pre-Symmetry Set has also done by one of our
European Project partners [5].

2 Gaussian Scale-Space

The N+1 dimensional Gaussian scale-space, L : RN+1 → R, of an N dimensional
image, I : RN → R, is an ordered stack of images, where each image is a blurred
version of the former [3,13,4]. The blurring is performed according to the diffusion
equation,

∂tL = ∇2L , (1)

where ∂tL is the first partial-derivative of the image in the scale direction t, and
∇2 is the spatial Laplacian operator, which in two dimensions reads ∂2

x + ∂2
y .

The Gaussian kernel is the Green’s function of the heat diffusion equation, i.e.

L(·; t) = I(·)⊗ g(·; t) , (2)

g(x; t) =
1

(4πt)N/2
e−xT x/(4t) , (3)

where L(·, t) is the image at scale t, I(·) is the original image, ⊗ is the convo-
lution operator, g(·; t) is the Gaussian kernel at scale t, N is the dimensionality
of the image I, and t = σ2/2, using σ as the standard deviation of the Gaussian
kernel.

3 Energy Functional and Energy Partitions

Given an image and a set of landmarks, we would like to partition the image into
segments so that each segment contains exactly one landmark. Let Ω ⊂ RN be a
compact connected domain. We define I : Ω → R+ as an image, and e,x ∈ Ω as
a landmark and a point in the domain, respectively. Consider a set of continuous
functions γ : [0, P ] → Ω for which γ(0) = e and γ(P ) = x. Write γ ∈ Γex, where
Γex is the set of all possible paths in the domain connecting landmark e to point
x, and where γ is parameterized using Euclidean arc-length. We define the energy
Ee(x) with respect to a landmark e evaluated at x as,

Ee(x) = inf
γ∈Γex

∫ P

0

√
(1− α) | dγ(p)

dp
|2 +α | ∂I(γ(p))

∂p
|2 dp , (4)

where γ ∈ [0, 1] is a tunable weighting parameter. Note that (4) is independent
of the parameterization, e.g. integrating with respect to q : [0, P ] → [0, P ] we
find:
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Ee(x) = inf
γ∈Γex

∫ p−1(x)

p−1(0)

√
(1− α) | dγ(p(q))

dp
|2 +α | ∂I(γ(p(q)))

∂p
|2 dq

= inf
γ∈Γex

∫ p−1(x)

p−1(0)

√
(1− α) | dγ(p)

dp
· dp
dq

|2 +α | ∇I · dγ(p)
dp

· dp
dq

|2 dq

= inf
γ∈Γex

∫ p−1(x)

p−1(0)

√
(1− α) | dγ(p)

dp
|2 +α | ∂I(γ(p))

∂p
|2 dp

dq
· dq

= inf
γ∈Γex

∫ P

0

√
(1− α) | dγ(p)

dp
|2 +α | ∂I(γ(p))

∂p
|2 dp .

(5)

Let E ⊂ Ω be the set of all landmarks in the image. An image segment or an
energy partition Si associated with landmark ei ∈ E is defined as the set of all
points in the images, where the energy Eei

(x) is minimal,

Si = {x ∈ Ω|Eei
(x) < Eej

(x), ∀ej ∈ E , i �= j}. (6)

An approximation of the energy map Eei : Ω → R+, which gives energy with
respect to landmark ei at every point in the image , can be efficiently calculated
using the Fast Marching Methods [8]. The resulting energy map is an approxi-
mation because isophotes generally do not coincide with the sampling points in
digital images. We are currently developing an energy map calculating algorithm
specifically designed according to this requirement.

4 Multi-scale Singularity Trees

MSSTs are constructed by connecting annihilation catastrophes in the scale-
space images.

In order to preseve the preferable tree structure of the MSSTs, creations and
loops in scale-space images are systematically removed:

1. Creations occuring in a critical path that can be traced back up to the
original image together with the corresponding annihilations are pairwise
removed and the whole critical path is considered as the critical path that
originates from the original image.

2. Creations immediately followed by annihilations creating loops together with
the critical paths involved in the loops are completely ignored.

The connections between catastrophes are decided from the nesting of image
segments defined by the energy functional and mathematical landmarks. Be-
cause of the natural pairwise interactions between critical points in the generic
scale-space images [2] and the tree building scheme to be represented in the fol-
lowing, resulting MSSTs are always rooted ordered binary trees [10]. A MSST
consists of nodes and their relations. Each MSST node has three components: (i)
the rightport denoting the disappearing image segment, (ii) the body denoting
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the annihilation catastrophe where the nesting is decided, and (iii) the leftport
denoting the image segment which immediately covers over the disappearing
one. Because we choose landmarks such that exactly one landmark disappears
at an annihilation catastrophe, and because there is exactly one image segment
associated with each landmark, then exactly one image segment disappears at
an annihilation catastrophe. This event creates nesting of image segments in
scale-space and the linking in MSSTs.

A node SleftCbodySright is generated when an image segment Sright disap-
pears at the catastrophe Cbody inside an image segment Sleft . The inclusion is
easily determined by calculating the energy map with respect to the catastrophe
Cbody: the image segment Sright is nested inside the image segment Sleft, if the
energy evaluated at the landmark of Sleft is minimal among all landmarks exist-
ing at that scale. MSSTs are built top-down starting from the top annihilation
catastrophe at the coarsest scale. A new node Nnew : Snew,leftCnew,bodySnew,right

is connected as the leftchild of a node Ni : Si,leftCi,bodySi,right, if the node Ni

does not have the leftchild and Snew,left = Si,left, or as the rightchild, if the
node Ni does not have the rightchild and Snew,left = Si,right.

It can easily be seen that this process is deterministic. When a node is added,
one connection point is closed while two new connection points are opened. Free
ports are always unique.

4.1 Extrema-Based MSSTs

Assuming that critical paths, the paths of critical points in scale-spaces, and
catastrophes have already been detected, the Extrema-Based MSST building
algorithm is as follows:

1. Set the root of the tree as BC∞Elast , where B denotes the border of the
image, Elast denotes the last extremum in scale, and C∞ denotes the virtual
catastrophe at scale infinity, where the last extremum virtually disappears
inside the image segment of the border.

2. At the highest unprocessed catastrophe Cnext, calculate the energy map
with respect to the catastrophe and create node EcoverCnextEann, where
Eann is the extremum that disappears at catastrophe Cnext, and the energy
evaluated at extremum Ecover is minimal among all extrema existing at that
scale.

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and where Ecover equals its leftport, or as the rightchild of
a node in the tree that does not have the rightchild and where Ecover equals
its rightport.

4. Repeat 2. until all catastrophe points are processed.

The schematic deep structure and its constructed Extrema-Based MSSTs are
shown together in the left column of Fig. 1.
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Fig. 1. The deep structure and its corresponding Extrema-Based MSST are shown
in the first and the second rows of the left column, while the deep structure and
its corresponding Saddle-Based MSST are shown in the first and the second rows of
the right column, respectively. Es denote extrema, Ss denote saddles, and Cs denote
catastrophes. Horizontal lines indicate the paths with minimal energies. The last row
of the figure shows trees of extrema and saddles, presented for better interpretation.

4.2 Saddle-Based MSSTs

A similar procedure is applied to construct Saddle-Based MSSTs, however now
we consider saddles for landmarks instead of extrema. The algorithm is as follows:

1. Set the root of the tree as CtopStop, where the leftport is set to null, Ctop

denotes the highest catastrophe in scale, and Stop denotes the saddle that
annihilates at catastrophe Ctop.

2. At the highest unprocessed catastrophe Cnext in scale, calculate the energy
map with respect to the catastrophe and create node ScoverCnextSann, where
Sann is the saddle that disappears at catastrophe Cnext and the energy
evaluated at saddle Scover is minimal among all saddles existing at that
scale.

3. Link the new created node as the leftchild of a node in the tree that does not
have the leftchild and Scover equals its leftport or as the rightchild of a node
in the tree that does not have the rightchild and Scover equals its rightport.

4. Repeat 2. until all catastrophe points are processed.

Notice that since the virtual catastrophe Cinf is not relavent, Saddle-Based
MSSTs always have one node less than those of Extrema-Based MSSTs of the
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same images. The deep structure and its constructed Saddle-Based MSST are
shown together in the right column of Fig. 1.

5 Transitions of MSSTS

An experiment aimed at studying the possible transitions of MSSTs is carried
out. A series of generated images of three stationary and one moving Gaussian
blobs is used in the experiment. A few examples of the test images are shown in
Fig. 2

Smooth changes of the test images are forced by smoothly changing the pa-
rameters used for generating the images. For each test image, a scale-space is
computed, the critical paths and catastrophes are extracted and detected. Fi-
nally, the Extrema-Based and Saddle-Based MSST are constructed. Changes in
the constructed MSSTs between neighbouring images are observed and carefully
classified into categories. Four kinds of transitions can be observed, i.e. change of
catastrophe-extremum/saddle position, change of catastrophe-catastrophe rela-
tion, change of catastrophe ordering, and change of extremum-catastrophe con-
nection.

Fig. 2. Images of three stationary and one moving Gaussian blobs. A few images taken
from the series of generated images used in the experiment.

5.1 Change of Catastrophe-Extremum/Saddle Position

The change of position transition is simple. It is caused by the movement of
catastrophes due to the movements of extrema/saddles and/or changes in in-
tensity values in the original image. Catastrophes may move as long as their
ordering in scale is undisturbed. The transition produces no impacts on the
topology of the MSST but only on the contents stored in the nodes. The change
of catastrophe-extremum/saddle position transition is illustrated in Fig. 3.

5.2 Change of Catastrophe-Catastrophe Relation

When the nesting of image segments in scale changes, the parent-child relations
in the Extrema-Based and Saddle-Based MSSTs will change accordingly. It re-
sults in the change of the leftport of the corresponding node and the movement
of the node with its right-subtree to the new location. The left-subtree is then
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Fig. 3. The original deep structures and the corresponding Extrema-Based and Saddle-
Based MSSTs before and after the change of position transition are shown in the top
and bottom row respectively. No topological change of the MSSTs.

move up to replace the position of its moved parent. Insert the node together
with its right-subtree at the new location according to the order of the catastro-
phe and its updated leftport. Finally, the replaced subtree is then reconnected
as the left-subtree of the inserted node. The situation is illustrated as the tran-
sition from the MSSTs in Fig. 3 to the MSSTs in Fig. 4, where the node of Cb is
changed from being nested inside Ea to being nested inside Eb in the Extrema-
Based MSST and the node of Cb is changed from being nested inside Sa to being
nested inside Sc in the Saddle-Based MSST. Note that the change of relation
transition usually occurs simultaneously with the change of position transition.

5.3 Change of Catastrophe Ordering

The structure of MSSTs depends strongly on the ordering of the catastrophes in
scale. If the ordering changes the structure of Extrema-Based and Saddle-Based
MSSTs will change. If we only consider local reordering between two neighboring
nodes in scale–larger changes of the ordering can be arrived by multiple local
reordering, the situation is quite simple. Either:

1. The two nodes do not posses parent-child relations:
The structure of the MSST is intact.

2. The two nodes posses parent-leftchild relation:
Swap the locations of the two nodes thereby swap their parent-leftchild re-
lations. Exchange the content of their leftports and finally reconnect the
left-subtree of the moved-up leftchild (new parent) as the left-subtree of the
moved-down parent (new leftchild). Their right-subtrees are left untouched.
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Fig. 4. The deep structures and the corresponding Extrema-Based and Saddle-Based
MSSTs after the change of catastrophe-catastrophe relation transition are shown in
the top and bottom row respectively

3. The two nodes posses parent-rightchild relation:
Swap the locations of the two nodes thereby swap their parent-leftchild rela-
tions. Set the leftport of the moved-down parent (new rightchild) to that of
the rightport of the moved-up rightchild (new parent). Reconnect the right-
subtree and the left-subtree of the new parent as the left-subtree and the
right-subtree of the new rightchild, respectively. Finally, update the leftport
of the new parent and reconnect it at the new location, defined by its new
leftport, followed by the procedure of the change of relation transition.

The first case of the change of ordering transition is simply reduced to a special
kind of the change of position transition, where local reordering of catastrophes
is allowed. The second case can be thought of as a combination of the change
of position and the change of catastrophe ordering, while the third case is a
combination of change of position, change of catastrophe-catastrophe relation,
and change of catastrophe ordering that occurs simultaneously.

The change of ordering transition is illustrated as a transition from the
MSSTs in Fig. 3 to the MSSTs in Fig. 5, where the neighboring nodes of Ca and
Cc swap their ordering positions in scale.

5.4 Change of Extremum-Catastrophe Connection

The change of extremum-catastrophe connection is the swapping of extremal
paths. This transition is only relavent to Extrema-Based MSSTs. The transi-
tion is the swapping of the right-ports and the whole right-subtrees of the two
nodes involved. The change of extremum-catastrophe connection transition is
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Fig. 5. The deep structures and the corresponding Extrema-Based and Saddle-Based
MSSTs after the change of catastrophe ordering transition are shown in the top and
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Fig. 6. The deep structure and Extrema-Based MSST after the change of extremum-
catastrophe connection transition

illustrated as the transition from the Extrema-Based MSST in the top row of
Fig. 3 to the Extrema-Based MSST in Fig. 6, where the catastrophe-extremum
connections between Ec and Cb and between Ed and Cc swap.

6 Extrema-Based vs. Saddle-Based MSSTs

Critical points in generic images can be categorized into extrema and saddles
by the eigenvalues of the Hessian matrix. With proper boundary conditions,
e.g. zero-padding, the image in scale-space at scale infinity will posses only one
extremum and no saddle [7].

Frequently, the positions of extrema, when are traced back from the catas-
trophes to the original image at scale zero, can change completely, even if only
slight perturbation is imposed to the image. These jumps of positions are caused
by the swapping of extremal paths connecting extrema and their catastrophes,
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and extremal paths that extends to higher scales. The swapping of extremal
paths results in complex transitions on Extrema-Based MSSTs as described in
the previous section. On the other hand, the swapping of extremal paths does
not disturb the topology of Saddle-Based MSSTs at all since only saddle paths
are considered. The situation comparing the stability of Extrema-Based and
Saddle-Based MSSTs when the swapping of extremal paths occurs is illustrated
in Fig. 7.

Nevertheless, Saddle-Based MSSTs do not fail to capture these changes of the
original image, since the swapping of the extremal paths is simply transformed
to simple movements of saddles and catastrophes on Saddle-Based MSSTs. The
smaller and simpler set of transitions of Saddle-Based MSSTs is preferable and
may lead to simpler, faster and easier to implement and understand algorithms
based on MSSTs.
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Fig. 7. The figure shows the deep structures of an image before and after imposing
slight perturbation to the original image. Frequently, the extremal paths connecting ex-
trema at different scales can be easily disturbed but the saddle paths can be considered
stable.

7 Summary and Conclusions

This paper presents the set of possible transitions of the Extrema-Based and
Saddle-Based Multi-Scale Singularity Trees. The transitions presented in this
paper is a sufficient set of MSST transitions in a sense that all possible trees
of the same number of nodes can be related to each other through series of
transitions found in this set. However, we have not proved conclusively that
the set is complete, since there might be other complex combinations of those
transitions in the set that, generically, occur simultaneously.

The simplicity of Saddle-Based MSST transitions, in comparison with those
of Extrema-Based MSSTs, is favorable. Because they are simpler, they are easier
to be understood which allows us to be able to derive sensible estimates for their
cost and simplifies further developments.

The study of transitions of Extrema-Based MSST presented in this paper is
an important step towards the development of the image matching and indexing
algorithms based on MSSTs and the Tree Edit Distance (TED) algorithms [1],
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where the difference or distance between two images is found as the minimum
cost of a series of edit operations, derived in accordance with the MSST transi-
tions, that transforms the MSST of one image into another.

Possible applications of MSSTs include image matching with MSSTs, multi-
scale image pre-segmentation, sub-object extraction, hierarchical image retrieval
in large image databases, etc. Recently, MSSTs also found applications in com-
puter graphics [9].

Acknowledgements

his work is part of the DSSCV project sponsored by the IST Programme of the
European Union (IST-2001-35443)

References

1. P. Bille. Report on Known Algorithm for Tree Matching. Technical report, Deliv-
erable No.5, DSSCV, IST-2001-35443, 2003.

2. J. Damon. Local Morse Theory for Gaussian Blurred Functions. In Sporring et al.
[11], chapter 11, pages 147–163.

3. T. Iijima. Basic theory on normalization of a pattern (in case of typical one-
dimensional pattern). Bulletin of Electrotechnical Laboratory, 26:368–388, 1962.
(in Japanese).

4. J. J. Koenderink. The Structure of Images. Biological Cybernetics, 50:363–370,
1984.

5. A. Kuijper and O. F. Olsen. Transitions of the Pre-Symmetry Set. In Proceedings
of the 17th Intl Conference on Pattern Recognition (ICPR’04), 2004.

6. T. Lindeberg. Scale-Space Theory in Computer Vision. The Kluwer International
Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston,
USA, 1994.

7. M. Loog, J.J., Duistermaat, and L.M.J. Florack. On the Behavior of Spatial Critical
Points under Gaussian Blurring. A Folklore Theorem and Scale-Space Constraints.
In Proceedings of the 3rd Intl Conference on Scale-Space 2001, pages 183–192, July
2001.

8. J. A. Sethian. Fast Marching Methods. SIAM Review, 41(2):199–235, 1999.
9. K. Somchaipeng, K. Erleben, and J. Sporring. A Multi-Scale Singularity Bounding

Volume Hierarchy. In Proceedings of the 13th Intl Conference in Central Europe
(WSCG’05), pages 179–186, January 2005.

10. K. Somchaipeng, J. Sporring, S. Kreiborg, and P. Johansen. Multi-Scale Singularity
Trees: Soft-linked Scale-Space Hierarchies. In Proceedings of the 5th Intl Conference
on Scale-Space 2005, pages 97 – 106, April 2005.

11. J. Sporring, M. Nielsen, L. Florack, and P. Johansen, editors. Gaussian Scale-Space
Theory. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

12. J. Weickert, S. Ishikawa, and A. Imiya. Om the History of Gaussian Scale-Space
Axiomatics. In Sporring et al. [11], chapter 4, pages 45–59.

13. A. P. Witkin. Scale–space filtering. In Proc. 8th Int. Joint Conf. on Artificial
Intelligence (IJCAI ’83), volume 2, pages 1019–1022, Karlsruhe, Germany, August
1983.



A Comparison of the Deep Structure of
α-Scale Spaces�

Remco Duits, Frans Kanters, Luc Florack, and Bart ter Haar Romeny

Eindhoven University of Technology,
Den Dolech 2, NL-5600 MD Eindhoven, The Netherlands

{R.Duits, F.M.W.Kanters, L.M.J.Florack, B.M.terhaarRomeny}@tue.nl
http://www.bmi2.bmt.tue.nl/image-analysis/people/rduits

Abstract. We compare the topology and deep structure of alternative
scale space representations, so called α-scale spaces, 1/2 ≤ α ≤ 1, which
are subject to a first order pseudo partial differential equation on the
upper half plane {(x, s) ∈ Rd × R | s > 0}. In particular, the cases α = 1
and α = 1/2, which correspond to respectively Poisson scale space and
Gaussian scale space, are considered. Poisson scale space is equivalent to
harmonic extension to the upper half plane, inducing potential physics,
whereas Gaussian scale space is generated by the diffusion equation on
the upper half plane, inducing heat physics. Despite the continuous con-
nection (by parameter 1/2 ≤ α ≤ 1) between these scale spaces and the
similarity between their convolution convolution kernels, we show both
theoretically and experimentally that there is a strong difference between
the topology in the deep structure of these scale spaces.

Keywords: α-Scale Spaces, Deep structure, Morse Theory.

1 Introduction

In linear scale space theory one obtains a so-called α-scale space representation
uα

f : Rd × R+ → R of a grey value image image f ∈ L2(Rd) by means of a
holomorphic semi group generated by −(−∆)α, 0 < α ≤ 1, i.e. they satisfy the
unique solutions of the pseudo differential evolution system{

us = −(−∆)αu
lim
s↓0

u(·, s) = f(·) , (1)

The unique solutions of which are obtained by means of a convolution

uα
f (x, s) = (Kα

s ∗ f)(x), s > 0,x ∈ Rd, (2)

where Kα
s = F−1[ω 	→ e−s‖ω‖2α

]. These isotropic linear scale space represen-
tations follow from a list of fundamental axioms, cf.[1] and the most common
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cases are α = 1 and α = 1
2 leading to respectively a diffusion system and α = 1

2
a potential problem on the upper space s > 0. In these cases the convolution
kernel1 equals respectively the Gaussian kernel and the Poisson kernel:

K1
s (x) =

1
(4πs)d/2

e−
‖x‖2

4s and K
1
2
s (x) =

2
σd+1

s

(s2 + ‖x‖2)
d+1
2

. (3)

With respect to Poisson scale space case we notice that the Laplacian factorizes
in two important ways:

∆d+1 =
∂2

∂s2
+ ∆d =

(
∂

∂s
−
√
−∆d

)(
∂

∂s
+
√
−∆d

)
(4)

From this factorization it directly follows that (under the extra condition that
u(·, s) → 0 uniformly as s →∞), that the case α = 1/2 corresponds to harmonic
extension to the upper plane, where we notice that

(
∂
∂s +

√
−∆d

)
u = 0 ⇔ us =

−
√
−∆d u. Furthermore, we notice that α-scale spaces correspond to symmetric

α-stable Levy-processes, that arise in the generalization of the Central Limit
Theorem2, [3] Chapter IX, 9.

An important geometrical quantity is the grey-value flow within an α scale
space uα

f of image f . This multi-scale vector field is given by

Fα[uα
f ](x, s) = (fαs ∗ f)(x), (5)

where fαs (x) = F−1[ω 	→ i 1
‖ω‖2(1−α) ω e−s‖ω‖2α

](x). To this end we notice that

∂

∂s
[uα

f ] = −(−∆)αuα
f = divFα[uf ],

which is easily verified in the Fourier domain: −‖ω‖2α = iω · i 1
‖ω‖2(1−α) ω. The

grey-value flow tells us how the grey-value particles flow within the scale space
representation and reveals the interaction between extremal paths in scale space.
For the special case of a Gaussian scale space α = 1 the grey-value flow is
obtained by means of the gradient as we have

Fα=1[uf ](x, s) = ∇xuf (x, s)

and fα=1
s = ∇xK

1
s (x). For the special case of a Poisson scale space α = 1

2 the
grey value flow is obtained by means of the Riesz transform

Fα= 1
2
[uf ](x, s) = Rxuf (x, s)

1 For the other α ∈ (0, 1], α 	= 1
2
, 1 there do not exist closed form expressions in

the spatial domain. Nevertheless, as is shown by Kanters et al.[2] α-kernels, with
α ∈ [ 1

2
, 1], can accurately be approximated by convex combinations of the Poisson

and Gaussian kernel.
2 In the central limit theorem sums of identically distributed (with finite variance)

independent variables are considered. If the finite variance assumption is omitted
the limiting distributions become α-kernel distributed.



236 R. Duits et al.

and fα= 1
2

s equals the vector-valued conjugate Poisson kernel:

fα= 1
2

s (x) = RxK
1/2
s (x) = Qs(x) =

2
σd+1

x

(s2 + ‖x‖2)
d+1
2

.

By extending a scale space with its flow, one obtains a vector scale space which
equals the first order jet of a Gaussian scale space if α = 1 and which equals
the monogenic scale space, cf.[4], if α = 1/2, which is most practical as it comes
to phase based image processing. If one considers α-scale spaces on a bounded

Poisson Scale Space Gaussian Scale Space
Physics: Potential Theory Heat Physics
Generator: −√−∆ = −∇ · R ∆ = ∇ · ∇
Flow: R(K

1
2
s ∗f)(x) = (Qs ∗f)(x) −∇(K1

s ∗ f)(x)
Extension Monogenic S.S. 1st order jet
Derivatives: Spherical Harmonics Hermite-polynomials

Fig. 1. A short overview of the correspondence between Gaussian scale space and
Poisson scale space

domain Ω with reflective Neumann boundary conditions ∂u
∂n

∣∣
∂Ω

= 0 (preferable
over other boundary conditions, cf. [5]) then the connection becomes even more
straight forward, as in this case the generators extend to a compact self-adjoint
operator on L2(Ω). From this observation it follows that the (generators of the)
α-scale spaces have a common orthonormal basis of eigen functions and the
solutions are given by

uα
f,Ω =

∑
m,n

fmn e−(−λmn)αs, (6)

where ∆fmn = λmnfmn and (fmn, fm′n) = δmm′δnn′ . For explicit computation
of {fmn, λmn} and implementation of the bounded domain α-scale spaces for
the special cases of the rectangle [0, a]× [0, b], a, b > 0 and the disk B0,a, a > 0
we refer to [5], [6], where also (applications of) the Monogenic scale space on a
bounded domain is considered. In the limiting case where the bounded domain
fills the whole R2 the solutions (6) converge to convolutions with α-kernels. In the
deep structure differences between the bounded and unbounded domain cases
only show up at either high scales or close to the boundary at lower scales. In
this article we will mainly consider α-scale spaces on a unbounded domain as
they are much more suitable for local analysis on topology.

On the one hand the strong connection, see figure 1, between α-scale spaces
is interesting as it smoothly relates methods using a Gaussian scale space, to
methods using a Poisson scale space and visa versa. On the other hand the strong
connection/similarity on (both the unbounded domain and bounded domain) α-
scale spaces puts the question whether there is a relevant difference between
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them. From the practical field in image analysis, there is a slight indication that
Poisson scale space (and its monogenic extension) is the optimal choice for phase
based processing and texture analysis, but until now an in-depth well-founded
comparison3 has not been made.

In this article we approach this issue from a purely topological point of view,
i.e. we investigate the differences (and analogies) between the deep structure of
α-scale spaces, which appears to be rather different. In Section 2, we give a brief
introduction to the deep-structure of α-scale spaces and show experimentally
that the extremal curves continuously depend on α, if the scale in a α-scale
space is re-scaled by s 	→ s

1
2α . Nevertheless, it quite often happens in images

(provided they do not only include low frequencies) that in a Poisson scale space
different extrema and saddles annihilate than extrema and saddles in its Gaus-
sian counterpart. We give a non-artificial example of an image whose Gaussian
scale space contains two creations, whereas its Poisson scale space contains no
creations and similarly show the extremal paths in the rescaled α-scale spaces
evolve as a function of α ∈ [ 12 , 1]. In Section 3 we both show theoretically and ex-
perimentally that creation events do occur in a 1D-Poisson scale space, whereas
they do not occur in a 1D-Gaussian scale space. In Section we investigate the
difference between α-scale spaces concerning causality, maximum principle and
Koenderink’s principle. In a Poisson scale space maxima can increase in value
over scale, which is not possible in a Gaussian scale space.

2 Deep Structure

The topological structure in a scale space and in particular the change of topo-
logical structure of u(·, s) over s > 0, reflects the hierarchical structure of objects
(like blobs) in an image. As the resolution increases extrema disappear until at
finite scale S > 0 only one extremum is left, cf.[7]. Points in scale space where a
saddle and extremum annihilate or points where an extremum and a saddle are
created are called top-points. The set of top-points is given by

{(x, s) | (detHxu(·, s))(x) = 0 and (∇xu(·, s))(x) = 0}.

At these points the topological structure changes. Other interesting points in
scale space are scale space saddles4, these are exactly those points were
∇x,su(x, s) = (0, 0). Although it is possible to construct a hierarchical tree-
structure by means of these points , cf. [8].

The tangent vector ∂β(x(β), s(β)), with s = β detHxu of a critical path
(moving with infinite speed through a top-point) in an alpha scale space (α ∈
(0, 1]) is given by

∂β(x(β), s(β)) = (−H̃xu∇x∂su, detHx(u)β),
3 Such a comparison is difficult, regarding the fact that scale in a Poisson scale space

has physical dimension length, whereas scale in the Gaussian scale space has physical
dimension length squared.

4 As is shown in [1], there do not exist interior extrema (with respect to scale and
position) in α-scale spaces.
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where 1
det(Hxu)H̃xu = (Hxu)−1. This directly follows by application of the chain

rule:

∂β(∇xu(x(β), s(β))) = Hxu(x(β), s(β))ẋ(β) +∇xus(x(β), s(β))
ds

dβ
= 0.

The curvature at a top-point (or catastrophe point) (x∗, s∗) along a critical curve
is given by κ(x∗, s∗) = 1

‖w(x∗,s∗)‖2 detM(x∗, s∗), where

M(x∗, s∗) =
(

Hxu ∂s(∇xu)T

∇x detHxu ∂s detHxu

)∣∣∣∣
(x,s)=(x∗,s∗)

, (7)

In case the curvature at a catastrophe point is negative, the catastrophe is an
annihilation and if the curvature is positive, the catastrophe is a creation. For
proof and definition of w(x∗, s∗) we refer to Florack et al.[9]. To this end we no-
tice that Florack’s derivation (only done for the case α = 1) is straightforwardly
generalized to the general case α ∈ (0, 1]. The critical curves through α-scale

Fig. 2. Left: Illustration of annihilations in Gaussian scale space of simple 2D image.
Middle: Illustration of creations in Gaussian scale space of simple 2D image. Right:
Illustration of critical paths within Gaussian (in blue) and Poisson scale space (in red)
of MRI-image of the brain.

spaces continuously depend on α, if scale is re-parameterized by s 	→ C ∗ s1/(2α).
Here the dimensionless constant C > 0 is still arbitrary and in our evaluations
it is chosen to scale the last annihilation at a fixed length. Furthermore we
notice that the physical dimension of the re-parameterized scale equals length
for all α ∈ (0, 1]. This continuous dependence is not surprising as the solutions
(both on a bounded and unbounded domain) continuously depend on α, recall
(2) and (6). However, in practice, it quite often happens that different extrema
and saddles annihilate in α-scale spaces, because of bifurcations with respect to
the deformation of the scale space parameterized by α. Top-points can be cre-
ated and annihilated with increasing α. Although, not considered here, this may
be a point for further investigation from a Morse-theoretical point of view, see
figure 3.
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Fig. 3. The critical curves trough α scale spaces of some arbitrary 2D-grey-value im-
age only plotted within a box [s1, s2] × [x1, x2], s1 < s2, x1 < x2. From top left to
bottom right, α = 1 (Gaussian scale space) down to α = 1/2 Poisson scale space,
α = 0.1, 0.95, 0.9, . . . , 0.5. Notice that in the case α = 1 there are two creations (two
crtical curves are bending below). In one of these cases (the closed loop) this creation
is immediately followed by a annihilation of the same extremum and saddle. The crit-
ical curves continuously depend on α, but still for example at α ≈ 0.75 a (besides the
bifurcation where the closed creation-annihilation-loop disappears) bifurcation arises
where a scale space creation and annihilation meat eachother. The last figure in the
bottom row clearly illustrates the large difference in topology (due to the bifurcations
in α) within the Gaussian and Poisson scale space in a larger box within the same scale
space.

3 Local Morse Theory for Gaussian Scale Space and
Poisson Scale Space

In this subsection we give a short summary of the local Morse theory developed
initially by James Damon,[10], for the diffusion equation and investigate how
they translate to the case of the Poisson equation. It turns out that the generic
topological changes in Poisson scale space correspond to the generic topological
changes in Gaussian scale space. However, a fundamental difference between the
frameworks, is that a Poisson scale space allows creations in scale spaces of 1D
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signals (d = 1), whereas in the Gaussian scale space the diffusion equation does
not allow creations in scale space of a 1D signal. Although these creations in
a 1D Poisson scale space are stable/generic in the mathematical sense, they do
not seem to occur frequently in practical situations5. Nevertheless, we will show
both analytic and representative numerical examples of 1D-Poisson scale spaces
including creation events.

Damon[10] introduces the groups G = H, with H the group of pairs (φ, c),
with φ : Rd+1 → R and c : R → R diffeomorphisms, acting on the space of solu-
tions of smooth functions Sα satisfying the evolution equation ∂u

∂s = −(−∆)αu,
α ∈ (0, 1], (in particular α-scale spaces) the group action

g · u(x, s) = u(φ1(x, s), φ2(s)) + c(s) ,

where g ∈ H, the group of pairs (x, s) 	→ (φ1(x, s), φ2(s)), where c, φ1 : Rd+1 →
Rd and φ2 : R+ → R+ are diffeomorphisms and where φ′

2(0) > 0. Furthermore,
Damon[10] introduces the group G = IS, with IS the group of pairs (φ, ψ),
with φ : Rd+1 → R, ψ : R2 → R diffeomorphisms of the forms φ(x, s) =
(φ1(x, s), φ2(s)) and ψ(y, t) = (ψ1(y, t), t) with φ′

2(0) > 0 and ∂
∂yψ(0, 0) > 0 and

ψ(0, t) = 0, acting on Sα by

g · u(x, s) = ψ1(u ◦ φ(x, s), s) + c = ψ1(u(φ1(x, s), φ2(s)), s) .

By introducing these groups, he defines equivalence relations by means of

u ∼ v iff there exists a g ∈ G such that u = g · v, (8)

i.e. two elements within Sα are equivalent iff they lie on the same orbit, which
yields H and IS-equivalence depending on the choice of group (action).6 How-
ever, here we follow an approach first formulated by J.C.van der Meer to singular-
ity theory for the diffusion equation, which is similar to the case G = IS similar
cf. [11]. In this approach the action of the group G = Diffd × Diff1, with Diffn

the group of diffeomorphisms from Rd to itself, acting on images f : Rd → R is
given by

(g · f)(x) = ψ · f · φ−1(x), g = (φ, ψ).

Notice that this group rather acts on the set of images, rather than on the
space of double sided (ũf = e−(−√−∆)sf, s ∈ R) scale spaces, which are to be
considered as 1-parameter deformations on images.

Definition 1. Let f : Rd → R. A 1-parameter deformation(or unfolding7) of f
is a continuous map u : Rd × R1 → R such that u(x,0) = f(x).
5 They do seem to occur more frequently in the conjugate Poisson scale space.
6 Notice that with respect to IS-equivalence, that the IS-group action is rather similar

to the H-group, but the intensity may change over scale as well (by ψ1) and the role
of s > 0 is no longer distinguished, so that by the equivalence relation one keeps
track of local changes of an iso-intensity surface as it undergoes a transition and the
intensity level of that critical point.

7 With unfolding one usually means the map (x, s) �→ (u(x, s), s).
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By considering 1-parameter deformations of the identity of the group G we
obtain the group Gun, which acts on 1-parameter deformations of images (in
particularly scale spaces) by means of

(g̃ · u)(x, s) = ψ̃(u(φ̃−1(x, s)), s) ,

where ψ̃(y, 0) = ψ(y) and φ̃−1(x, 0) = (φ−1(x), 0). Notice that (g̃ · ũf )(x, 0) =
(g ·f)(x), for all g̃ ∈ Gun corresponding to a certain g ∈ G for every f ∈ L2(R2).

Definition 2. Two deformations u, v are called G̃-equivalent if u lies within the
obit of v, or more precisely, there exists a g̃ ∈ G̃ such that u ∼ v ⇔ u = g̃ · v.

Definition 3. A function f : Rd → R is G-stable if any deformation is G-
equivalent to the constant deformation. A deformation u is G̃-stable8 if any
deformation of u is G̃ equivalent to the constant deformation.

A function f : Rd → R is G-stable (or generic) iff the tangent space at f , TG(f)
equals E0, the space of all smooth germs of functions at zero.

Lemma 1. Thereby a double-sided scale space representation ũf is G̃-stable iff
either f is stable or the co-dimension of f in E0 equals 1, dim(E0/TG(f)) = 1,
and ∂

∂s ũf

∣∣
τ=0

generates the complement.

However, we are merely interested in single sided scale spaces where scale is a
strictly positive parameter, s > 0, as we do not want to include (ill-posed) de-
blurring.

This means that in the co-dimension one case we can only generate half 9 of
the remainder in the tangent space.

This is the reason for a distinction between one-sided and two sided stability.
In the case of two sided stability the function (or rather germ) f was already
stable, whereas in the second case the co-dimension of f in E0 equals 1. For
further details, see Van der Meer[11].

3.1 A Partition of Equivalence Classes of G̃-Stable Gaussian
Deformations

The space of G̃-stable Gaussian Deformations Sα=1 can be partitioned into
equivalence classes due to the equivalence relation given by (2). First we consider
the case d ≥ 2. Then the equivalence classes (germs) are represented by one of
the following functions:

1. Two sided stable germs:
(a) u(x, s) = x1, (submersion)

8 The notion of stability can be rephrased as follows: A function u is stable if all
functions that are close to u (in an appropriate topology) are G̃-equivalent to u.

9 The sign of ∂u
∂s s=0

relative to becomes relevant in the definition of G̃-equivalence.



242 R. Duits et al.

(b) 2ds +
d∑

i=1

x2
i

(c)
d∑

i=1

aix
2
i , with

d∑
i=1

ai = 0 all ai �= 0. (classified by the signs of ai)

2. One sided stable germs:
(a) x3

1 − 6 x1(x2
2 + s) + Q(x2, . . . , xd, s), (creations of critical points),

(b) x3
1 + 6s x1 + Q(x2, . . . , xd, s), (annihilations of critical points),

with Q(x, s) =
d∑

k=2

εk(x2
k + 2s), with εk = ±1 for k = 2, . . . , n.

The two-sided stable germs are of less interest since in all of these cases TG(f) =
E0 and thereby TG(f)+R+ ∂u

∂s

∣∣
s=0

= TG(f) = E0. So here we have no bifurcations
of the critical paths in scale space.

It follows from Lemma 1 that the only bifurcations the image f can undergo
as a consequence of Gaussian blurring are given by singularities of co-dimension
1. The standard form of a co-dimension one function is given by

C1(x) = x3
1 +

d∑
i=2

aix
2
i , ai �= 0, (9)

with universal deformation x3
1 + t x1 +

∑d
i=2 aix

2
i . For t > 0 there are no critical

points while for t < 0 there are two critical points, a saddle and an extremum.
This is known as the cusp catastrophe [12].

The Gaussian deformation of C1 is given by (Gs ∗ C1)(x) = x3
1 + 6s x1 −

2(
∑d

i=2 ai)s +
∑d

i=2 aix
2
i . This yields the germs describing the annihilation of

critical points in a Gaussian scale space. Notice that the complement to the
tangent space is spanned by the vector ∆C1(x) = 6 x1 ≡ x1.

Consider C2(x) = x3
1 − 6x2

2x1 +
∑d

i=2 aix
2
i . Although C2 is equivalent to C1

their Gaussian deformations are not one-sided equivalent: The Gaussian defor-
mation of C2 equals Gs ∗C2(x) = x3

1− 6x2
2x1− 6x1s− 2(

∑d
i=2 ai)s+

∑d
i=2 aix

2
i ,

so now the complement to the tangent space is spanned by the vector ∆C2(x) =
−6 x1 ≡ −x1.

The case d = 1 can be treated in an analogue matter, except for the annihi-
lation germ, where no such x2 is at hand. Creations can not occur in a Gaussian
scale space. Recall, to this end that that the curvature at a catastrophe point
(x∗, s∗) (uxx and ux vanish) equals κ = 1

‖w‖2 detM , see (7). In 1D the matrix
M is given by

M(x∗, s∗) =
(

uxx(x∗, s∗) uxs(x∗, s∗)
uxxx(x∗, s∗) uxxs(x∗, s∗) ,

)
and since uxx(x∗, s∗) = 0 it directly follows from

detM(x∗, s∗) = −uxs(x∗, s∗)uxxx(x∗, s∗) = −(uxxx(x∗, s∗))2
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that the curvature is always negative, allowing only annihilations and no cre-
ations. Notice that this argument does not hold in a Poisson scale space, where

det M(x∗, s∗) = uxs(x∗, s∗)uxxx(x∗, s∗) = −1
2
[
d

ds
uxs]2(x∗, s∗) = −1

2
[

d

ds
vxx]2(x∗, s∗),

where v denotes the conjugate Poisson scale space, is not a priori negative.

3.2 A Partition of G-Stable Poisson Deformations

Following the same line as for the Gaussian case we obtain the following partition
of G̃-stable Poisson Deformations:

1. Two sided stable germs:
(a) u(x, s) = x1, (submersion)

(b) −2ds2 +
d∑

i=1

x2
i

(c)
d∑

i=1

aix
2
i , with

d∑
i=1

ai = 0 all ai �= 0. (classified by the signs of ai)

2. One sided stable germs:
(a) x3

1 − 3s2 x1 − s x1 + Q(x2, . . . , xd, s), (creations of critical points),
(b) x3

1 − 3s2 x1 + s x1 + Q(x2, . . . , xd, s), (annihilations of critical points),

with Q(x, s) =
d∑

k=2

εk(x2
k − s2), where εk = ±1 for k = 2, . . . , d.

The annihilation and creation germ are obtained by means of harmonic extension
of the cusp catastrophe C1 given by (9). To this end we notice that#((x3

1±is)3) =
x3

1−3s2x1. At this point it should be noticed that the Laplace operator factorizes
in 2 different ways

∆d+1 = ∂2

∂s2 + ∂2

∂x2
1

+ ∆d−1 =
(

∂
∂s −

√
−∆d

) (
∂
∂s +

√
−∆d

)
=
(

∂
∂s + i ∂

∂s

) (
∂
∂s − i ∂

∂s

)
+ ∆d−1,

As we already noticed, the first factorization tells us that upward harmonic
extension of an image f ∈ L2(Rd) under the additional requirement that the
harmonic extension should uniformly vanish as s → ∞ is equivalent to solving
the first order pseudo differential evolution system (1) for α = 1/2, leading to
Poisson scale space. Here we only consider local behavior and do not have the
additional requirement at hand. Therefore harmonic extension of the 1 cusp
catastrophe (with co-dimension 1) is not sufficient. For example, a creation by
harmonic extension could be due to a Poisson de-blurring.10 More precisely, the
Poisson deformation could in principle be obtained by means of the evolution
generated by +

√
−∆ rather than −

√
−∆). At this point, in comparison to the

Gaussian case, there arises a technical problem as the convolution of the cusp
catastrophe with the Poisson kernel does not exist.

10 Annihilations become creations if s �→ −s.
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Therefore (as we are interested in local behavior only) we compute (Hd
s ∗

gd
b,ε)(x), where Hd

s denotes the d dimensional Poisson/Cauchy kernel and

gd
b,ε(x) = g1

b,ε(x1) = (x3
1 + εx1)1[−b,b](x1),x = (x1, . . . , xd),

where ε = ±1 and 1[−b,b](x1) = 1 if |x1| < b and 0 elsewhere. Some computation
yields

(Hd
s ∗ gd

b,ε)(x) = (H1
s ∗ g1

b,ε)(x1)
= 1

2π
8 x1 b s − 2(x3

1 − 3x1s
2 + εx1) arctan x1−b

s
− arctan x1+b

s

−s(s2 − 3x2
1 + 2) log (x1−b)2+s2

(x1+b)2+s2 .

If we now omit the order O(b)-term and take the limit b →∞ we indeed obtain
the annihilation (ε = 1) and creation (ε = −1) germs x3

1 − 3 x1s
2 + εx1, ε = ±1.

Further we notice that in contrast to the Gaussian case creations are G-stable
in the 1D-case d = 1. Notice that in the 1D-creation case the critical paths of the

above germ are given by x(s) = ±
√

s2 + 1
3s, s > 0, whereas the critical paths

of the annihilation germ are given by x(s) = ±
√

s2 − 1
3s, s < 0.

For a simple analytic example of a 1D-creation (at scale s = 0) in Poisson
scale space, where the initial condition only consists of 3-delta spikes, see figure
4. To this end we notice that in stead of δ-spikes (which are distributions, not
functions) one may as well take the step function f = −1(−d,d) + 1(a−d,a+d) +
C ∗ 1(−b−d,−b+d), with a, b > 2 ∗ d as initial condition. In this case the Poisson
scale space can also be computed analytically and the scale space is given by

uα
f (x, s) = 1

π
arctan x−a+d

s
− arctan x−a−d

s

− arctan x+d
s

+ arctan x+d
s

+ C arctan x+b+d
s

− C arctan x+b−d
s

,

which also has five extrema at s = 1/4, for example at ≈ −1.50, 0.128, 0.304, 2.96
and 4.00, if a = 4, b = 1.5, d = 0.1, C = 25. For a numerical example of a 1D-
creation within (at a scale s > 0) Poisson scale space see figure 5.

4 Causality in Gaussian and Poisson Scale Space

Another difference the deeps structure between Gaussian scale space and other
α-scale spaces (α �= 1) is causality. There exists two types of causality, see Defi-
nition 4, the Gaussian scale space is the only α-scale space which satisfies strong
causality.11 To this end we refer to figure 7 and we note that it is already shown
by Hummel[13] that strong causality is equivalent to the maximum principle, see
Definition 5, which is well-known to hold for the diffusion system. The maximum
principle follows directly follows by the Koenderink’s principle that states that
us(x, s)∆u(x, s) > 0 at spatial extrema, which only holds in a Gaussian scale
space, and which guarantees that local extrema do not enhance.

11 In [1] we have shown that all α-scale spaces satisfy weak causality.
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Fig. 4. Top Row: From left to right, slices of the Poisson scale space, uα
f (·, s), of a

signal f consisting of only 3 δ-spikes, with analytic solution u
α=1/2
s (x) = K

α=1/2
s (x −

a) + K
α=1/2
s (x) + c ∗ K

α=1/2
s (x + b), a = 8, b = 2, c = 10 at s = 0.001, s = 0.05, s =

0.1, s = 0.15. Bottom Row: Corresponding Gaussian scale space uα=1
s (x) = Kα=1

s (x −
a) + Kα=1

s (x) + c ∗ Kα=1
s (x + b), s = (1/2)σ2 at σ = 0.2, σ = 0.7, σ = 0.12, σ = 0.17.

This simple analytical example gives a clear illustration of a creation (3 singular points
at s = 0 become 5 singular points at s > 0) in Poisson scale space at s = 0, whereas
in the Gaussian scale space the number of extrema remains 3 as it should as creations
can not occur in a 1D-Gaussian scale space. Notice that the extremum at x ≈ 1.5
increases in value in the Poisson scale space, this is not possible in a Gaussian scale
space, due to the Koenderinks principle, which is related to the difference in causality
(and maximum principle) between Gaussian and Poisson scale space.

Fig. 5. Top down, left to right, slices of a numerical implementation of a 1D-Poisson
scale space, uα

f (·, s), of a numerical signal f , with s = 0, 0.4, 0.8, 1.2, 1.6., 2.0. It is
clearly seen that a creation event takes place at (x, s) ≈ (500, 0.5).

Definition 4. Weak Causality : Any scale space isophote u(x, s) = λ is con-
nected to the ground plane, i.e. it is connected to a point u(x, 0) = λ.
Strong Causality Constraint : For every s1 ≥ 0 and s2 > 0 with s2 > s1

the intersection of any connected component of an isophote within the domain
{(x, s) ∈ Rd × R+ | x ∈ Rd, s1 ≤ s < s2} with the plane s = s1 should not be
empty.

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5

200 400 600 800 1000

-1.5

-1

-0.5

0.5

1

1.5



246 R. Duits et al.

X

S

X

S

Fig. 6. Left: Weak causality, Right: Strong causality

Definition 5. (Cylinder Maximum Principle.) Let Ω be a (arbitrary) bounded
subset of Rd and s1 > 0 such that u is continuous on Ω × [0, s1], then u attains
its maximum or minimum in say (x, s) ∈ Ω× [0, s1]. Either we must have s = 0
or x ∈ ∂Ω.
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Fig. 7. Isophotes of various scale space representations of a signal consisting of 1 small
delta spike between two larger delta spikes. Top row: α = 0.5 (Poisson scale space),
α = 0.6, α = 0.7, bottom row: α = 0.8, α = 0.9 and α = 1 (Gaussian scale space). The
α scale spaces are sampled according to sα = eατn , with equidistant τn. To this end
we notice that both (sα)

1
2α and

√
s1 = σ have dimension [Length]. The stretching of

the isophotes as α increases is of no importance. The above figure shows that for each
α ∈ (0, 1) there exist locally concave critical isophotes .

5 Conclusion

There exists a simple and strong connection between α-scale spaces and the
corresponding vector scale spaces (and their flow fields). In particular between
the case of Poisson scale space (α = 1/2), where this vector scale space is the
well-known Monogenic scale space, and the case of Gaussian scale space (α = 1),
where this vector scale space extension equals the first order jet, which is some-
what surprising concerning the different physics involved (respectively potential
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physics and heat physics). This raises the question whether these α-scale spaces
are essentially different for multi-scale image analysis, as methods in one frame-
work are easily translated to methods in the other frameworks. We approached
this question only from a topological point of view and conclude that the deep
structure of α-scale spaces, although continuously deformed by α, provided scale
is properly re-parameterized, is rather different:

– Experiments on daily life images often show that different extrema and sad-
dles annihilate in α-scale spaces. Moreover, creation events that take place
in one scale space need not take place in the other.

– By applying morse theory on Poisson scale space and Gaussian scale space we
deduce that creations are generic events in 1D-Poisson scale space (illustrated
by both analytic and numerical examples), whereas they can not occur in
Gaussian scale space.

– Isophotes through critical points do behave differently in Gaussian scale
space than in the other α-scale spaces, where they behave similarly.
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Abstract. In this note we study the local behavior of singularities oc-
curring in scale space under Gaussian blurring. Based on ideas from
singularity theory for vector fields this is done by considering deforma-
tions or unfoldings. To deal with the special nature of the problem the
concept of Gaussian deformation is introduced. Using singularity the-
ory the stability of these deformations is considered. New concepts of
one-sided stability and one-sided equivalence are introduced. This way a
classification of stable singularities is obtained which agrees with those
known in literature.

1 Introduction

In computer vision (see [6], [7]) the main problem is to identify and manip-
ulate objects in a computer screen image. In general the image is given by a
”pixel intensity” function. By embedding this function in a one-parameter fam-
ily a scale-space representation is obtained, with the parameter representing
the scale. The scale on which the image is considered is changed by applying
”blurring”. In most literature Gaussian blurring is considered. Starting with an
intensity function u0(x) on Rn Gaussian blurring yields a family of intensity
functions u(x; τ), where τ can be considered the scale parameter. When con-
sidering Gaussian blurring these functions have to satisfy the diffusion equation

∂u

∂τ
= ∆u , (1)

with u(x, 0) = u0(x), u0 : Rn → R ∈ C0(Rn,R). In [5] it is shown that the
axioms of scale space allow also blurring with respect to the operators −(−∆)α,
0 < α < 1. Through blurring a less detailed image is obtained by diffusion
of the intensity function which is equivalent to considering a larger scale. This
way the image can be blurred in such a way that it only contains the relevant
information. At some stages one may however want to reconstruct parts of the
image in more detail.

In the following we want to understand the behavior of the intensity func-
tions, especially the qualitative changes the intensity functions will undergo when

O.F. Olsen et al. (Eds.): DSSCV 2005, LNCS 3753, pp. 249–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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changing the scale parameter. We will at first restrict to the case of two dimen-
sional images, where local qualitative changes will be studied. Local qualitative
changes occur when a critical point of the intensity function changes its nature. If
the intensity functions are required to be sufficiently differentiable one can inter-
pret the level lines of the intensity function as integral curves of an Hamiltonian
system or equipotential lines of a gradient vector field. The scale parameter can
now be considered as a deformation parameter of some planar Hamiltonian sys-
tem or gradient vector field. Consequently, the questions concerning the local
behavior of critical points of smooth functions is similar to studying bifurcations
of vector fields. The intensity functions are however parameter dependent in a
particular way, i.e. the parameter is introduced by Gaussian blurring. To deal
with this we introduce the new concept of semigroup deformations and show
that this is the proper framework for studying bifurcations under Gaussian blur-
ring. We will illustrate the theory by applying it to Gaussian deformations, that
is, work with the semigroup generated by the Laplace operator. For semigroups
generated by the operators −(−∆)α, 0 < α < 1, the theory should apply as
well. Because in this case the computations will be somewhat more complicated
this question will not be addressed in this paper. When considering the local
behavior of critical points of smooth function on R2 we may assume the critical
point to be at the origin. This can be obtained by allowing shifts or working
modulo addition of constants. Also the gradient vanishes at the critical point
and consequently the nature of the critical point is determined by the eigenval-
ues of the hessian. By Morse theory the generic critical points are centers and
saddles. The idea taken from the study of singularities of vector fields is now to
start from a (possibly non-generic) critical point, unfold the function and derive
results concerning its stability. This way this paper provides an alternative way
to obtain results concerning stable singularities in Gaussian scale space which
can be found in [3] where a complete singularity theoretic treatment is given of
Gaussian blurring. In a much more general context results are obtained in [4]
for many other generalizations, including working wit other semigroups. Com-
pared to the singularity theoretic approach in [3] we circumvent the problem of
defining the right group of transformations by applying geometric arguments.
These geometric arguments allow us to obtain the results concerning this special
case in a straightforward way from the results known in singularity theory. The
results obtained are in a slightly different form compared to Damon’s. The origin
of these differences lies in the fact that the underlying group of transformations
is different from the ones chosen in [3] as we exploit full A-equivalence.

2 Preliminaries on Stability, Deformations and
Unfoldings

We will start with recalling some facts from singularity theory and/or bifurcation
theory ([1,2,10]) in order to reveal the precise meaning of the terminology used.

Let G be a group of transformations acting on the space of functions. (or a
local group at 0 acting on the space of germs of functions). For instance right-left
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action of origin preserving diffeomorphisms G = A = Diffn×Diff1, with Diffn the
group of C∞ diffeomorphisms from Rn to itself, acting by g·f(x) = ψ◦f◦φ−1(x),
g ∈ G, φ ∈ Diffn and ψ ∈ Diff1.

Also other groups can be chosen. To illustrate this we will give the groups
used by Damon [3]. Damon [3] introduces G = H, with H the group of pairs
(φ, c), φ ∈ Diffn+1 of the form φ(x, t) = (φ1(x, t), φ2(t)) with φ′

2(0) > 0 and
c ∈ Diff1, and acting by g · f(x, t) = f ◦ φ(x, t) + c(t). In addition G = IS is
introduced in [3], with IS the group of pairs (φ, ψ), φ ∈ Diffn+1 of the form
φ(x, t) = (φ1(x, t), φ2(t)) with φ′

2(0) > 0 and ψ ∈ Diff2 of the form ψ(y, t) =
(ψ1(y, t), t) with (∂ψ1/∂y)(0, 0) > 0 and ψ1(0, t) = 0, and acting by g · f(x, t) =
ψ1(f ◦φ(x, t), t) + c. The groups H and IS should be considered as local groups
of germs of diffeomorphisms at the origin acting on germs of functions. Damon
describes IS-equivalence as A-equivalence of unfoldings preserving the target.

Note that Damon considers groups of diffeomorphisms on Rn+1, that is, the
parameter is included. In the sequel we will start with considering group actions
of groups that do not depend on the scale parameter. The parameter will be
introduced by unfolding and considering equivalence of unfoldings.

Taking the scale parameter t in IS equal to a constant this group reduce to
to A with adding constants, i.e we obtain the group ISc which is the group of
triples (φ, ψ, c), φ ∈ Diffn, ψ ∈ Diff1 with (∂ψ/∂y)(0) > 0 and ψ(0) = 0, c a
constant, and acting by g · f(x) = ψ(f ◦ φ(x)) + c.

Definition 1. Two functions f , h from Rn to R are G- equivalent if

f = g · h
for some g ∈ G.

Note that the notion of equivalence depends on the choice of the group of
transformations chosen.

Definition 2. Let f0 : Rn → R. A s-parameter unfolding of f0 is a map
f : Rn × Rs → R× Rs such that

i. f(x, u) = (f̃(x, u), u), where x ∈ Rn, u ∈ Rs, f̃(x, u) ∈ R,i.e. π ◦ f = π,
where π : Rn ×Rs → Rs and π : R×Rs → Rs are the canonical projections.

ii. f0(x) = f̃(x, 0).

In practice one often calls f̃(x, u) an unfolding of f0, although, if one wants
to be precise f̃ : Rn × Rs → R is actually a deformation of f0. The constant
unfolding is the unfolding f of f0 with f̃(x, u) = f0(x).

When considering unfoldings of functions f(x, u) we may also consider a
group of transformations G̃ consisting of unfoldings of G acting on these unfolded
functions. A transformation g(x, u) ∈ G̃ is an unfolding of the identity if
g(x, 0) = id. We denote the unfoldings of the identity by Gun.

Let f be a s-parameter unfolding of f0. Consider a map χ given by χ : v →
u = χ(v), i.e. a transformation acting on the parameter space is considered. The
pull-back of f by χ is the t-parameter unfolding

χ∗f : Rn × Rt → R× Rt; (x, v) → (f̃(x, χ(v)), v) .
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Definition 3. Two s-parameter unfoldings f and h of f0 are equivalent if there
exists a g ∈ Gun such that

h = g · f .

An unfolding is trivial if it is equivalent to the constant unfolding. An unfolding
f of f0 is universal if every unfolding of f0 is equivalent to χ∗f for some
mapping χ.

For Aun equivalence this means that

h = ψ ◦ f ◦ ϕ−1 (2)

with
ϕ : Rn+s → Rn+s; (x, t) → (ϕ̃(x, t), t) ,

and
ψ : R1+s → R1+s; (y, t) → (ψ̃(y, t), t) ,

where both ϕ̃ and ψ̃ are unfoldings of the identity, i.e. ϕ̃(x, 0) = x and ψ̃(x, 0) =
x.

Two arbitrary unfoldings f and h of f0 are equivalent if h is Gun equivalent
to χ∗f for some C∞ map χ.

With abuse of language we wil say in the remainder of this paper that un-
foldings f and h are G-equivalent, where the action of the maps is as given
above.

Like before a trivial or universal unfolding gives rise to a trivial or universal
deformation.

Moreover

Definition 4. A function f0 is stable if any unfolding of f0 is trivial.

The notion of stability can be rephrased as follows. A function f0 is stable
if all functions that are close to f0 (in an appropriate topology) are equivalent
to f0, i.e. are in the G-group orbit through f0. Stability is usually considered
through the equivalent notion of infinitesimal stability, i.e. formulated in terms
of the tangent space to the orbit. Let f0 be in E0, the space of smooth germs
of functions at zero. Let TG(f0) denote the tangent space at f0 to the G-orbit
through f0.

Proposition 1. f0 ∈ E0 is stable if an only if TG(f0) = E0 .

Thus f0 is stable if and only if the complement to the tangent space to the
G-orbit at f0 is empty. If f0 is not stable then define

Definition 5. The G-codimension of f ∈ E0 is

d(f,G) := dim (E0/TG(f) ) .
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If the co-dimension is non-zero the nontrivial deformations of f0 can be found
by unfolding f0 in the directions which are in the complement to the tangent
space. The tangent space can be given the form of a module of vector fields.
Also describing the complement by a basis of vector fields Xi, we may consider
the one-parameter groups etXi acting on the space of functions. Then f(x, t) =
etXif0(x) gives a deformation of f0 in the direction of Xi with initial speed
Xif0, where Xif0 is the derivative of f0 along Xi. A deformation is a universal
deformation if the unfolding directions span the complement to the tangent space
to the orbit at f0. Therefore a universal deformation is stable.

3 Deformations by Semi-groups

If the unfolding directions are prescribed to follow the orbit of a semigroup,
for instance because the deformation is governed by some partial differential
equation, we speak of a semigroup deformation. Let Sτ , τ > 0 be a semigroup,
then the semigroup deformation of f0 is a function f(x, τ) = Sτf0, with f :
Rn × R+ → R. By extending the domain of the parameter τ to R we obtain
F (x, τ) with F : Rn × R → R. We obtain the following theorem (cf [3] Lemma
4.5).

Theorem 1. F (x, τ) is G-stable if and only if either f0 is stable or d(f0,G)=1
and ∂Sτ f0

∂τ |τ=0 generates the complement of TG(f0) in E0.

Proof. If f0 is stable then any unfolding is trivial and hence stable. If f0 is of
co-dimension 1 then the unfolding F (x, τ) is stable if and only if it is universal.

 !
In the above the notion of stability is used with respect to the full group

action. A semigroup deformation, by definition, only exists for τ > 0. That
is, we have a one-sided deformation. As a consequence the initial speed
∂Sτ f0

∂τ |τ=0 of the deformation has to be taken with its direction. Therefore in
the G-codimension-one case we can at most obtain half of E0 because the diffeo-
morphisms acting on the deformation must respect the sign of τ . Consequently
the deformation does not cover a full neighborhood of f0 but only a halfspace.
To cover the other half we need an other deformation, which, with respect to
the full group, is equivalent to the previous one. The two are not equivalent if
we restrict our group action to the proper halfspace and consider stability with
respect to the restricted group action. To make this precise, if we have that
R{∂Sτf0

∂τ |τ=0} + TG(f0) = E0 considered as modules, then F (x, τ) is a universal
deformation. With R+ = {τ ∈ R|τ > 0} we obtain for a semigroup deformation
f(x, τ) = Sτf0 the halfspace R+{∂Sτ f0

∂τ |τ=0}+TG(f0) which is half of the tangent
space if F (x, τ) is a nontrivial universal deformation.

Definition 6. Two non-trivial one-parameter deformations h(x, τ) and g(x, τ)
of f(x) are one-sided G-equivalent if they are G-equivalent and

R+{
∂h

∂τ

∣∣∣∣
τ=0

}+ TG(f) = R+{
∂g

∂τ

∣∣∣∣
τ=0

}+ TG(f) .
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Now if f0 and g0 are G-equivalent then also universal deformations f and g are
equivalent. This need not be true for semigroup deformations because
R+{∂Sτf0

∂τ |τ=0} + TG(f0) and R+{∂Sτg0
∂τ |τ=0} + TG(g0) need not be equivalent,

i.e. diffeomorphic by a τ dependent map which respects the sign of τ .

Definition 7. Two non-trivial semigroup deformations Sτf1 and Sτf2 are one-
sided G-equivalent if f1 and f2 are G-equivalent, i.e. if there exists a g ∈ G such
that f1 = g ·f2, and Sτf1 and g ·Sτf2 are on-sided G-equivalent as one parameter
deformations of f1

Here in g · Sτf2 the action of g ∈ G is on the x variable only. Consequently
g · Sτf2 is an unfolding of g.f2.

Definition 8. A non-trivial semigroup deformation Sτf0 is one-sided G-stable
if any semigroup deformation Sτf1 such that f0 = g · f1 for some g ∈ G and
such that ∂Sτ f0

∂τ (x, 0) and ∂g·Sτ f1
∂τ (x, 0) have the same sign as vectors in E0 is

one-sided G-equivalent to Sτf0.

Note that two one-sided stable semigroup deformations need not be one-sided
equivalent. They might lie on different sides of the tangent space to the orbit
through f0.

For trivial deformations we have to adjust our definition.

Definition 9. A trivial semigroup deformation Sτf0 is two-sided G-stable if f0

is G-stable.

Note that in this case

R+{
∂Sτf0

∂τ

∣∣∣∣
τ=0

}+ TG(f0) = TG(f0) = E0 .

Theorem 2.

(i) If for a semigroup deformation Sτf0, F (x, τ) is a non-trivial G-stable defor-
mation then Sτf0, is one-sided G-stable.

(ii) If for a semigroup deformation Sτf0, F (x, τ) is a trivial G-stable deformation
then Sτf0 is two-sided G-stable.

or phrased differently

Corollary 1. If for a semigroup deformation Sτf0, F (x, τ) is a non-trivial G-
universal deformation then Sτf0, τ ∈ R+, is one-sided G-stable.

Note that two one-sided stable semigroup deformations need not be one-sided
equivalent. They might lie on different sides of the tangent space to the orbit
through f0.
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4 Gaussian Deformations

In the case where one wants the deformation of f0 to be a solution of the diffu-
sion equation the deformation is completely prescribed by the diffusion equation
giving ∂u

∂τ , that is, the direction in which one has to unfold is in fact given. The
unfolding transformations are given by the semigroup exp(τ∆).

Definition 10. Consider a function f0. The one parameter deformations
f(x; τ) of f0 with the unfolding direction given by

∂u

∂τ
= ∆u ,

are
f(x, τ) = exp(τ∆)f0 .

These deformations are called Gaussian deformations.

Note that exp(τ∆) is a holomorphic strongly continuous one-parameter semi-
group, therefore its action on smooth functions is well defined. The Gaussian
deformation can also be obtained by convolution with the Gaussian kernel.

The following theorem allows us to consider the notion of stability for such
one-parameter semi-group deformations

Corollary 2. f(x, τ) = exp(τ∆)f0 is G-stable if and only if either f0 is stable
or d(f0,G)=1 and ∆f0 generates the complement of TG(f0) in E0.

Thus the possible bifurcations f0 can undergo as a consequence of Gaussian
blurring are given by the singularities of co-dimension-1 for which f(x, τ) =
exp(τ∆)f0 is G-stable.

Note that the constant and linear terms in f0 do not influence the unfolding
terms but linear terms and constant terms (i.e. depending only on t) can appear
as unfolding terms. The linear terms in the deformation do influence the behav-
ior of critical points. Therefore we will work modulo constant terms. Phrased
differently we may include adding constant terms, which may be terms depend-
ing on t only, in the group action (compare the groups H and IS of Damon [3]).
These constant terms change the intensity-level but not the qualitative behavior
of the bifurcation.

If we consider A-equivalence than the stable functions are the Morse-func-
tions a1x

2+a2y
2. The Gaussian deformations of these Morse-functions are a1x

2+
a2y

2 + 2t(a1 + a2). These are trivial A-deformations. That is the initial speeds
belong to the tangent space to the A-orbit through the function. They are stable.
Because there is no initial speed transversal to the orbit we have two-sided
stability.

The standard form of an A-co-dimension one function is y3 + x2, with uni-
versal A-deformation y3 + ty + x2. For t > 0 there are no critical points while
for t < 0 there are two critical points, a saddle and a node. We have creation
or annihilation of critical points depending on the sign of t. In terms of vector
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fields this is known as the saddle-node bifurcation [8]. In catastrophe theory it
is the fold catastrophe [11].

Now this is an A-deformation while we have to consider Gaussian deforma-
tions. The Gaussian deformation of y3+x2 gives y3+6ty+x2+2t, t > 0. Because
it is equivalent to the universal A-deformation it is one-sided A-stable. The com-
plement to the tangent space is spanned by the vector y. Now the saddle-node
bifurcation is in this case a saddle and a center which exist for t < 0 and join and
disappear at t = 0. Thus restricting to t > 0 there is no structural change other
then the critical point disappearing. Only by de-blurring, i.e. use exp(−τ∆),
one sees that a saddle and a center are created. Thus blurring corresponds to
annihilation.

In order to cover the codimension one case we need two one-sided
A-deformations obtained from semi-group deformations. Consider y3−6yx2+x2

which has A-codimension one and is actually A-equivalent to y3 + x2. Its uni-
versal A-deformation is y3 − 6yx2 + ty + x2 and its Gaussian deformation is
y3 − 6yx2 − 6ty + x2 + 2t. The complement to the tangent space is spanned
by the vector −y. Thus we obtain the complementary one-sided A-stable de-
formation. In terms of catastrophe theory the latter is a fold embedded in the
elliptic umbilic. Again there is a saddle-node bifurcation. This time the saddle
and center are created at t = 0.

More on catastrophe theory in the context of image analysis can be found in
[9]

This classifies all the one-sided A-stable Gaussian deformations. (cf [3] The-
orem 3)

Theorem 3. The A-stable Gaussian deformations in R2 are listed in table 1.

Table 1. A-stable Gaussian deformations in R2

Initial function Gaussian deformation Stability type
x2 + y2 x2 + y2 + 4t two-sided A-stable
x2 − y2 x2 − y2 two-sided A-stable
y3 + x2 y3 + 6ty + x2 + 2t one-sided A-stable
y3 − 6yx2 + x2 y3 − 6yx2 − 6ty + x2 + 2t one-sided A-stable

A straightforward generalization to higher dimensions is obtained by adding
quadratic Morse functions in the additional variables (see [2]) .

Theorem 4. The A-stable Gaussian deformations in Rn are listed in table 2.
Here Q is a quadratic function as in (i) but with variables xi, i > 1, with Q(t)
its Gaussian deformation.

If we considers functions f(x, y) on R2 with a critical point at the origin and
f(0, 0) = 0, then a normal form for the co-dimension 1 singularity is given by
y3+x2 which has universal deformation y3+λy2+x2. This universal deformation
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Table 2. A-stable Gaussian deformations in Rn

p = 1, · · · , n Initial function Gaussian deformation Stability type
(i)p

∑p
i=1 x2

i −∑n−p
j=1 x2

i

∑p
i=1 x2

i −∑n−p
j=1 x2

i + 2(2p − n)t two-sided A-stable
(ii)p x3

1 + Q x3
1 + 6tx1 + Q(t) one-sided A-stable

(iii)p x3
1 − 6x1x

2
i + Q x3

1 − 6x1x
2
i − 6tx1 + Q(t) one-sided A-stable

describes the transcritical bifurcation ([8]). If one considers Gaussian blurring
the question is wether this deformation is equivalent to a Gaussian deformation.
Therefore take y3 + 6ty + x2 + 2t and apply the shift y = z +

√
−2t (or y =

z −
√
−2t), we get z3 + 3

√
−2tz2 + x2 + g(t). An additional shift on the target

puts the Gaussian deformation in the required form z3 +3
√
−2tz2 +x2. Thus for

t > 0 we do not get any equivalence with (part of) the transcritical bifurcation.
De-blurring gives z3 + 3

√
2tz2 + x2. Thus we obtain the part of the transcritical

bifurcation with λ = 3
√

2t > 0. We get equivalence of deformations but not
for all values of the parameters. The mapping λ2 = 18t in parameter space
reflects that the transcritical bifurcation is a folded fold. Note that using the shift
y = z−

√
2t gives the other half. However z3 +3

√
2tz2 +x2 and z3−3

√
2tz2−x2

are equivalent, so our equivalence class does not allow us to distinguish between
the role of saddles and centers. Consequently both shifts y = z +

√
−2t and

y = z −
√
−2t describe the same phenomena. In a similar fashion one can show

that y3 − 6yx2 − 6ty + x2 + 2t is equivalent to half the transcritical bifurcation.

�

Fig. 1. Saddle-node bifurcation

�

Fig. 2. Transcritical bifurcation

5 Conclusion

If we restrict to A-equivalence and allow diffeomorphisms on the parameter space
then combining all actions lead to

ψ̃2(ψ1(f̃(ϕ̃−1
3 (ϕ−1

1 (x), ϕ−1
2 (t)))) ,

with ϕ1 ∈ Diffn, ϕ2 ∈ Diff1, ψ1 ∈ Diff1, ϕ̃3 and ψ̃2 as in (2), which comes
down to A-equivalence of map germs Rn × R → R × R. That is, unfoldings
are also considered under right-left equivalence. The above approach was chosen
to reveal the role of the directional preference invoked by the use of Gaussian
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deformations. It shows that one can actually take the singularity theoretic normal
forms obtained for A-equivalence and relate them to solutions of the diffusion
equation. The above framework provides an alternative way to obtain the generic
qualitative changes in Gaussian scale space in comparison to [3,4]. It indicates
how to generalize to higher dimensions and how to deal with other operators
than the Laplace-operator. Differences with the work of Damon occur because
we exploit full A-equivalence. This gives a larger group of transformations and
therefore a less detailed classification. For instance there is no distinction between
ellipses and circles. Furthermore working modulo constants makes it impossible
to carefully keep track of the intensity levels.
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